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Rolnick, et al. “Application-driven Innovation in Machine Learning”, 

International Conference on Machine Learning (ICML) 2024. 

Challenges for ML

OOD generalization

Interpretability

Lightweight models

Physical constraints

Limited labels

Multi-modal data

…
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CropHarvest dataset, Togo

ML for agricultural remote sensing

Kerner et al. (2020)



ML for agricultural remote sensing
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Key challenges

Sparse labeled data

CropHarvest dataset



ML for agricultural remote sensing
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Key challenges

Sparse labeled data

Irregularly shaped data

Wang et al. (2020)
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ML for agricultural remote sensing
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Key challenges

Sparse labeled data

Irregularly shaped data

Limited computational budget

Problem-relevant information

Geographic structure

Large amount of unlabeled data

Diversity of input sensors/features



Many related problems
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CropHarvest dataset

EuroSat datasetTreeSatAI dataset

“Tick tick bloom”: Algae

Fuel moisture content

(Rao et al. 2020)
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Tseng, Cartuyvels, Zvonkov, Purohit, Rolnick, Kerner, “Lightweight, pre-trained transformers for remote sensing timeseries”, 

preprint arXiv:2304.14065.

Presto algorithm leverages 

structure of remote sensing data

Input at pre-training time:

• Pixel time-series of sensor data     

and derived data products

• Lat-lon / temporal encodings

Idea: mask out timesteps and input 

features, train to reconstruct them

Presto algorithm – self-supervised learning
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Tseng, Cartuyvels, Zvonkov, Purohit, Rolnick, Kerner, “Lightweight, pre-trained transformers for remote sensing timeseries”, 

preprint arXiv:2304.14065.

Learned encodings can then be 

used in solving downstream task

With limited labeled data, train a 

lightweight classifier (linear 

regression, random forest, kNN)
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Presto algorithm – use case
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Learned encodings can then be 

used in solving downstream task

With limited labeled data, train a 

lightweight classifier (linear 

regression, random forest, kNN)
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Presto algorithm – use case
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Learned encodings can then be 

used in solving downstream task

With limited labeled data, train a 

lightweight classifier (linear 

regression, random forest, kNN)
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Tseng, Cartuyvels, Zvonkov, Purohit, Rolnick, Kerner, “Lightweight, pre-trained transformers for remote sensing timeseries”, 

preprint arXiv:2304.14065.

CropHarvest TreeSatAIEuroSat

Results

Accuracy matches/exceeds larger models

Competitive with image-structured algorithms 

Effective with single RGB timepoints
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High-resolution climate data on demand
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Two directions for ML:

• Climate model emulators

• Statistical downscaling  = super-resolution

ERA5 reanalysis data = remote sensing + 

ground sensor data + climate models

High-resolution climate data on demand



Machine learning for downscaling climate data
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Standard ML super-resolution methods:

• Generative adversarial networks (GANs)

• Super-res convolutional neural networks (SR-CNNs)

• Vision transformers

Key challenges:

• Physical constraints

High-res
water mass

Low-res 
water mass



Machine learning for downscaling climate data
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Standard ML super-resolution methods:

• Generative adversarial networks (GANs)

• Super-res convolutional neural networks (SR-CNNs)

• Vision transformers

Key challenges:

• Physical constraints

• Lack of high-res training data
?



Machine learning for downscaling climate data
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Standard ML super-resolution methods:

• Generative adversarial networks (GANs)

• Super-res convolutional neural networks (SR-CNNs)

• Vision transformers

Key challenges:

• Physical constraints

• Lack of high-res training data

• Differences from “natural” images



Physical constraints - e.g. conservation of mass, energy, or momentum

Typical ML approach: Try to learn from data, or add a loss penalty

Our approach: enforce via a hard constraint layer

High-res
water mass

Low-res 
water mass

Part 1: physical constraints
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Harder, Yang, Ramesh, Sattigeri, Hernandez-Garcia, Watson, Szwarcman, Rolnick, “Generating physically-consistent high-

resolution climate data with hard-constrained neural networks”, Journal of Machine Learning Research (JMLR) 2023.

Neural 
network



Physical realism

Accuracy

Visual quality

Part 1: physical constraints
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Harder, Yang, Ramesh, Sattigeri, Hernandez-Garcia, Watson, Szwarcman, Rolnick, “Generating physically-consistent high-

resolution climate data with hard-constrained neural networks”, Journal of Machine Learning Research (JMLR) 2023.



Part 2: arbitrary resolution downscaling
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Low-res 

pixels xij

High-res 

pixels yij



Part 2: arbitrary resolution downscaling
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Low-res 

pixels xij

High-res 

pixels yij

Continuous

function f(i,j)

Fourier neural operator parametrizes map 

between functions in Fourier domain

x 2

Yang, Hernandez-Garcia, Harder, Ramesh, Sattegeri, Szwarcman, 

Watson, Rolnick, “Fourier Neural Operators for arbitrary 

resolution climate data downscaling”, preprint arXiv:2305.14452.
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Low-res 

pixels xij

High-res 

pixels yij

Continuous

function f(i,j)

Fourier neural operator parametrizes map 

between functions in Fourier domain

x 4

Yang, Hernandez-Garcia, Harder, Ramesh, Sattegeri, Szwarcman, 

Watson, Rolnick, “Fourier Neural Operators for arbitrary 

resolution climate data downscaling”, preprint arXiv:2305.14452.



Part 2: arbitrary resolution downscaling
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Low-res 

pixels xij

High-res 

pixels yij

Continuous

function f(i,j)

Fourier neural operator parametrizes map 

between functions in Fourier domain

x 10

Yang, Hernandez-Garcia, Harder, Ramesh, Sattegeri, Szwarcman, 

Watson, Rolnick, “Fourier Neural Operators for arbitrary 

resolution climate data downscaling”, preprint arXiv:2305.14452.



Part 2: arbitrary resolution downscaling
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Low-res 

pixels xij

High-res 

pixels yij

Continuous

function f(i,j)

Fourier neural operator parametrizes map 

between functions in Fourier domain

x 10

Generalizes without need for high-res data

Fourier domain well-matched to fluid dynamics



Experimental results
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ERA5 reanalysis data

Total column water



Experimental results
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ERA5 reanalysis data

Total column water

Zero-shot 

generalization 

from 2x task

Trained 

specifically    

on 4x task



Experimental results
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ERA5 reanalysis data

Total column water

Navier-Stokes eqn.  

viscous, incompressible 

fluid in vorticity form

(original FNO problem)
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Balancing the electrical grid requires solving a 
nonconvex opt problem, AC Optimal Power Flow

Exact solutions take too long, so typically grid 
operators simplify the problem, wasting large 
amounts of power, especially w/ solar and wind 

Typical DL uses soft penalty for constraint 
violation

But since even slight infeasibility renders useless

We design a DL approach to approximately solve 
non-convex optimization problems while 
satisfying hard constraints.
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Constrained deep learning for grid optimization

P. Donti, D. Rolnick, J.Z. Kolter, DC3: A learning method for optimization with hard constraints, ICLR 2021.
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Goal: Approximate mapping from 𝑥 to 𝑦, while satisfying constraints

Approximate optimization w/ hard constraints
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Input x

correction
( ≤ )completion

( = )

neural
network

Output

Loss

DC3: Deep Constraint Completion & Correction

P. Donti, D. Rolnick, J.Z. Kolter, DC3: A learning method for optimization with hard constraints, ICLR 2021.
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Output subset of variables

Then solve for rest:

where

s.t.

Procedure is differentiable (either 
explicitly or via implicit function thm)

Equality completion

P. Donti, D. Rolnick, J.Z. Kolter, DC3: A learning method for optimization with hard constraints, ICLR 2021.
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Gradient steps along manifold 
defined by equality constraints:

Inequality correction

P. Donti, D. Rolnick, J.Z. Kolter, DC3: A learning method for optimization with hard constraints, ICLR 2021.
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Input x

correction
( ≤ )completion

( = )

Loss

neural
network

Output

End-to-end training with soft loss

P. Donti, D. Rolnick, J.Z. Kolter, DC3: A learning method for optimization with hard constraints, ICLR 2021.
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Satisfies all constraints (unlike other DL methods)
10x faster than optimizer, 0.22% optimality gap

and even faster in practice thanks to GPU parallelization

Performance on AC Optimal Power Flow

P. Donti, D. Rolnick, J.Z. Kolter, DC3: A learning method for optimization with hard constraints, ICLR 2021.
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Example of what not to do
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ML continues to rely on benchmarks like ImageNet-1k 

to evaluate models and pre-train for applied settings.

Such benchmarks are often derived from Internet data, 

chosen & labeled without relevant experts in the room.

Example: We worked with ecologists to analyze the 27% 

of ImageNet-1k that is wild animals.

• 12.3% of the images are wrong, 11.9% of categories 

overlap with each other

• Species heavily biased towards United States.

Such datasets are used to pick “SoTA” algorithms as 

well as to (pre)train for real-world applications.
Alexandra Sasha Luccioni and David Rolnick, 

Bugs in the Data: How ImageNet Misrepresents 

Biodiversity, AAAI 2023.
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Better datasets
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Automated Monitoring of Insects (AMI)
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Automated Monitoring of Insects (AMI)
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Downscaling FNO

AMI

Key considerations

ML is not a silver bullet and is only relevant sometimes

High-impact applications are not always flashy

Interdisciplinary collaboration

▸ Scoping the right problems
▸ Incorporating relevant domain information
▸ Shaping pathways to impact

DC3



ML can also negatively impact the climate

Computation-related impacts

▸ Energy from computation
▸ Embodied emissions from hardware
▸ Low for many algorithms, high for some

Application-related impacts

▸ ML use in fossil fuel exploration/extraction (5% production boost)

▸ ML-enabled advertising systems that increase consumption (e.g. fast fashion)

▸ Autonomous vehicles:  Pos. / neg. impacts depending on how tech is developed

Kaack, Donti, Strubell, Kamiya, Creutzig, Rolnick, “Aligning AI with Climate Change Mitigation,” Nature Climate Change 2022.
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“AI for Good” doesn’t only mean adding 
new “good” applications of AI. It means 

shaping all applications of AI to be 
better for society.



Ways to get involved

Consider becoming a bridge between ML and another field, such as energy, 

agriculture, or Earth sciences

Many job opportunities exist in this space, incl. mainstream CS research, focused 

institutes, startups, major tech companies, public sector initiatives

Working explicitly on climate problems isn't the only way to help - consider how to 

better align other ML projects w/ climate goals

Every application of ML affects the climate, often in multiple ways

And of course ML is not the only way to work on climate change…

60



Reports with opportunities for 
researchers, practitioners, and 
policymakers

Digital resources

Climate Change AI
Catalyzing impactful work at the intersection of climate change & ML

Newsletter, blog, &  community

Calls for Submissions

Funding

Projects & Courses

Readings

Jobs

Learn more & join in:   

www.climatechange.ai

@ClimateChangeAIGlobal research funding
for impactful projects

Funding programs

61

Workshop series
▸ Upcoming at NeurIPS 2024
▸ View past papers at: 

www.climatechange.ai/papers

Summer school

Conferences & events

http://www.climatechange.ai/
http://www.climatechange.ai/papers?
http://www.climatechange.ai/papers?


Other relevant resources

Publication venues: Ongoing JMLR special track on climate change, 

Environmental Data Science, ACM COMPASS, many domain-specific venues

More info in the Climate Change AI monthly newsletter

62

Selected communities & events

▸ Energy: ACM e-Energy, IEEE Power & Energy, PSCC, BuildSys, AI.EPRI

▸ Land use: GRSS-IEEE, Int'l Soc. of Precision Ag, Restor, Global Forest Watch

▸ Climate & Earth science: Climate Informatics, AGU/EGU, Phi-Week

▸ Biodiversity: AI for Conservation slack, WILDLABS, GEO BON

▸ General: CompSustNet (community & doctoral consortium)

https://www.climatechange.ai/newsletter


Datasets and challenges

Energy: CityLearn, OPFLearn, ARPA-E GO, PowerGridworld, L2RPN, BeoBench, 

Building Data Genome, bbd.labworks.org, COBS, BOPTEST/ACTB, Open Catalyst

Land use: TorchGeo, Radiant MLHub, blutjens/awesome-forests, CropHarvest, 

LandCoverNet, Agriculture-Vision, chrieke/awesome-satellite-imagery-datasets, 

Climate & Earth science: mldata.pangeo.io, ClimateLearn, ClimART, CauseMe

Adaptation: wandb/droughtwatch, Global Flood Database, FloodNet, ITU GEOAI

Biodiversity: iNat dataset, LifeCLEF, FGVC, iWildCam, Movebank

63



Roadmap for working in ML for climate action

Identify key areas that you may want to work in

Check out datasets or challenges to get hands-on practice

Explore and learn more, including how non-ML techniques are being used

Find collaborators with complementary domain expertise

Work together to scope problems and data sources (may not be ML-ready)

Design algorithms to incorporate domain knowledge where possible

Work with deployment partners & affected stakeholders to guide impact

64



Thank you!
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