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1 Executive Summary
This deliverable presents the results at M12 for tasks T3.2 (Fairness and Counterfactual Inter-
ventions), T3.3 (Cognition-aware hybrid decision-making systems) and T3.4 (Privacy-Preserving
Machine Learning). For each task, we describe in detail the methods, results, and outcomes ob-
tained in terms of scientific publications, software, and other materials. What follows is a more
detailed list of what can be found in each section of this report.
T3.2 (Fairness and Counterfactual Interventions). The section is devoted to discussing
progress made by the partners on topics related to fairness and counterfactual interventions. There
are a significant number of topics covered, including bias mitigation in multimodal systems (i.e.,
image-to-text generation), measuring group fairness using Shapely values, removing toxic contents
generated by vision language models, techniques for early detection of hallucination in diffusion
models, personalized algorithmic recourse and, eventually, quantifying fairness by using fuzzy logic.
T3.3 (Cognition-aware hybrid decision-making systems). Biases are also covered from a
cognition perspective. Indeed, in this section of the report, we discuss the results obtained by
partners with a focus on the presence of human-like cognitive biases in AI systems, on the human
cognitive biases that emerge when looking at images beautified through the usage of AI-based
beauty filters and, eventually, on methods to detect cognitive biases in the news.
T3.4 (Privacy-Preserving Machine Learning). Another aspect covered in this report con-
cerns privacy-preserving machine learning. In this section, we focus on federated learning and we
show that membership inference attacks are less effective on clients with larger datasets and more
complex models. In addition, a partner investigates how model-agnostic federated learning can
help to mitigate such attacks as it allows clients to use models of different complexities to enhance
privacy.
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2 Introduction
Artificial Intelligence (AI) has rapidly become an integral component of modern society, influencing
decision-making processes across diverse domains, from healthcare to finance and beyond. As AI
systems become more pervasive, the issues of fairness and bias within these technologies have
garnered increasing attention. Ensuring that AI systems operate equitably and transparently is
not only an ethical imperative but also critical for maintaining public trust and the integrity of
automated decision-making.

The challenge of fairness in AI is multifaceted, encompassing the identification, measurement,
and mitigation of biases that may be embedded in these systems. Bias can arise from various
sources, including the data used to train models, the design of algorithms, and the societal struc-
tures that AI systems reflect and potentially perpetuate. Traditional approaches to addressing bias
often focus on well-known categories such as gender, race, and age. However, there is a growing
recognition that biases are more numerous and complex than previously considered. This neces-
sitates an open-ended exploration of biases, acknowledging that new and unforeseen biases may
emerge as AI technologies evolve.

A critical aspect of achieving fairness in AI is the personalization of interventions. Different
individuals and groups may experience the impacts of AI systems differently, requiring tailored
approaches to ensure equitable outcomes. This personalization extends beyond simple demographic
categorizations, recognizing the unique circumstances and needs of each user. Developing methods
for quantifying fairness and bias, such as through advanced metrics and frameworks, is essential
for assessing the fairness of AI systems and guiding the implementation of corrective measures.

Moreover, the influence of AI extends into areas such as media and personal aesthetics, where
biases can also manifest. The examination of biases in global news reporting highlights the ten-
dency for certain narratives to be emphasized or neglected, which can shape public perception
and understanding. Similarly, the use of AI-driven beauty filters often reinforces certain beauty
standards, leading to potential biases in how attractiveness is perceived and valued. These areas
underscore the pervasive nature of bias and the importance of addressing it across all applications
of AI.

In conclusion, this deliverable focuses on the fundamental directions of fairness in AI, emphasiz-
ing the need for comprehensive bias identification, personalized interventions, and robust methods
for fairness quantification.
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3 T3.2 Fairness and Counterfactual Interventions.
3.1 Bias Mitigation in Multimodal Systems
Contributing partners: UNITN

3.1.1 Introduction and Methodology

Text-to-Image (T2I) generation has become increasingly popular, thanks to its intuitive condition-
ing and the high quality and fidelity of the generated content [9, 10, 11, 12, 5]. Several works
extended the base T2I model, unlocking additional use cases, including personalization [13, 14],
image editing [15, 16, 17, 18], and various forms of conditioning [19, 20, 21]. This rapid progress
urges to investigate other key aspects beyond image quality improvements, such as their fairness
and potential bias perpetration [3, 2, 22]. It is widely acknowledged that deep learning models
learn the underlying biases present in their training sets [23, 24, 25], and generative models are no
exception [22, 3, 2, 26].

OpenBias (ours)

Closed-set

"A person using
a laptop"

Pre-defined biases

Bias proposals

"A person using
a laptop"

Bias assessment

Male
...

Apple

Open-set biases

Gender
...

Laptop brand

Bias specific
Classifier Male

Figure 1. OpenBias discovers biases in T2I models within an open-set scenario. In contrast to previous
works [2, 3, 4], our pipeline does not require a predefined list of biases but proposes a set of novel domain-specific
biases.

Ethical topics such as fairness and biases have seen many definitions and frameworks [27];
defining them comprehensively poses a challenge, as interpretations vary and are subjective to
the individual user. Following previous works [2, 28], a model is considered unbiased regarding a
specific concept if, given a context t that is agnostic to class distinctions, the possible classes c ∈ C
exhibit a uniform distribution. In practice, for a T2I model, this reflects to the tendency of the
generator to produce content of a certain class c (e.g., “man”), given a textual prompt t that does
not specify the intended class (e.g., “A picture of a doctor”).

Several works studied bias mitigation in pre-trained models, by introducing training-related
methods [29, 30, 31, 32] or using data augmentation techniques [33, 34]. Nevertheless, a notable
limitation of these approaches is their dependence on a predefined set of biases, such as gender,
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age, and race [22, 2], as well as specific face attributes [3]. While these represent perhaps the most
sensitive biases, we argue that there could be biases that remain undiscovered and unstudied.

Considering the example in Fig. 1, the prompt “A person using a laptop” does not specify the
person’s appearance and neither the specific laptop nor the scenario. While closed-set pipelines
can detect well-known biases (e.g., gender, race), the T2I model may exhibit biases also for other
elements (e.g., laptop brand, office). Thus, an open research question is: Can we identify arbitrary
biases present in T2I models given only prompts and no pre-specified classes? This is challenging
as collecting annotated data for all potential biases is prohibitive.

Bias Proposals

Person gender
Train color

Vehicle Type
...

Person Race

Classes 
Captions Questions

Person Race

What is the race of the person?
...

What is the race of the person throwing a Frisbee?

Target
Generative Model

G

Synthetic Images

VQA

Class 1 Class 2 ... Class 

Bias 

A chef in a kitchen standing next to jars
...

    A kid on a beach throwing a Frisbee

    

Bias Assessment

Ranking

...

LLM

Caucasian
African American

...
Hispanic

Bias Quantification

    

A chef in a kitchen standing next to jars
A person that is posing by a plane

A large round cake rests on a glass plate
...

A baby eating in a baby seat
A boy with a book sitting on a toilet

A man is playing tennis on a tennis court

            

...

Figure 2. OpenBias pipeline. Starting with a dataset of real textual captions (T ) we leverage a Large Language
Model (LLM) to build a knowledge base B of possible biases that may occur during the image generation process.
In the second stage, synthesized images are generated using the target generative model conditioned on captions
where a potential bias has been identified. Finally, the biases are assessed and quantified by querying a VQA
model with caption-specific questions extracted during the bias proposal phase.

Train color

“A train zips down the railway in the
sun”

Laptop brand

“A photo of a person on a laptop in a
coffee shop”

Horse breed

“A cop riding a horse through a city
neighborhood”

Figure 3. Novel biases discovered on Stable Diffusion XL [5] by OpenBias.

Toward this goal, we propose OpenBias (see Fig.2), the first pipeline that operates in an open-
set scenario, enabling to identify, recognize, and quantify biases in a specific T2I model without
constraints (or data collection) for a specific predefined set. Specifically, we exploit the multi-modal
nature of T2I models and create a knowledge base of possible biases given a collection of target
textual captions, by querying a Large Language Model (LLM). In this way, we discover specific
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biases for the given captions. Next, we need to recognize whether these biases are actually present
in the images. For this step, we leverage available Visual Question Answering (VQA) models,
directly using them to assess the bias presence. By doing this, we overcome the limitation of using
attributes-specific classifiers as done in previous works [2, 3, 35], which is not efficient nor feasible
in an open-set scenario. Our pipeline is modular and flexible, allowing for the seamless replacement
of each component with newer or domain-specific versions as they become available. Moreover, we
treat the generative model as a black box, querying it with specific prompts to mimic end-user
interactions (i.e., without control over training data and algorithm). We test OpenBias on variants
of Stable Diffusion [5, 12] showing human-agreement, model-level comparisons, and the discovery
of novel biases.

3.1.2 Experiments

Datasets. We study the bias in two multimodal datasets Flickr 30k [36] and COCO [37]. Flickr30k [36]
comprises 30K images with 5 caption per image, depicting images in the wild. Similarly, COCO [37]
is a large-scale dataset containing a diverse range of images that capture everyday scenes and ob-
jects in complex contexts. We filter this dataset, creating a subset of images whose caption contains
a single person. This procedure results in roughly 123K captions. Our choice is motivated by build-
ing a large subset of captions specifically tied to people. This focus on the person-domain is crucial
as it represents one of the most sensitive scenarios for exploring bias-related settings. Nevertheless,
it is worth noting that the biases we discover within this context extend beyond person-related
biases to include objects, animals, and actions associated with people.

Child gender

“Toddler in a baseball cap on a
wooden bench”

Child race

“Small child hurrying toward a bus
on a dirt road”

Person attire

“The lady is sitting on the bench
holding her handbag”

Figure 4. Novel person-related biases identified on Stable Diffusion XL [5] by OpenBias.

Quantitative Results. Our open-set setting harnesses the zero-shot performance of each com-
ponent. As in [2], we evaluate OpenBias using FairFace [38], a well-established classifier fairly
trained, as the ground truth on gender, age, and race.
Agreement with FairFace. We compare the predictions of multiple SoTA Visual Question
Answering models with FairFace. Firstly, we assess the zero-shot performance of the VQA models
on synthetic images, performing our comparisons using images generated by SD XL. The evaluation
involves assessing accuracy and F1 scores, which are computed against FairFace predictions treated
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Model Gender Age Race

Acc. F1 Acc. F1 Acc. F1

CLIP-L [39] 91.43 75.46 58.96 45.77 36.02 33.60
OFA-Large [40] 93.03 83.07 53.79 41.72 24.61 21.22
mPLUG-Large [41] 93.03 82.81 61.37 52.74 21.46 23.26
BLIP-Large [42] 92.23 82.18 48.61 31.29 36.22 35.52
Llava1.5-7B [43, 44] 92.03 82.33 66.54 62.16 55.71 42.80
Llava1.5-13B [43, 44] 92.83 83.21 72.27 70.00 55.91 44.33

Table 2. VQA evaluation on the generated images using COCO captions. We highlight in gray the chosen
default VQA model.

Model Flickr 30k [36] COCO [37]
gender age race gender age race

Real 0 0.032 0.030 0 0.041 0.028
SD-1.5 [12] 0.072 0.032 0.052 0.075 0.028 0.092
SD-2 [12] 0.036 0.069 0.047 0.060 0.045 0.105
SD-XL [5] 0.006 0.028 0.180 0.002 0.027 0.184

Table 3. KL divergence (↓) computed over the predictions of Llava1.5-13B and FairFace on generated and real
images.

as the ground truth. The results are reported in Table 2. Llava1.5-13B emerges as the top-
performing model across different tasks, consequently, we employ it as our default VQA model.

Next, we evaluate the agreement between Llava and FairFace [38] on different scenarios. Specif-
ically, we run the two models on real and synthetic images generated with Stable Diffusion 1.5, 2,
and XL. We measure the agreement between the two as the KL Divergence between the probabil-
ity distributions obtained using the predictions of the respective model. We report the results in
Table 3. We can observe that the models are highly aligned, obtaining low KL scores, proving the
VQA model’s robustness in both generative and real settings.

Qualitative Results. We show examples of biases discovered by OpenBias on Stable Diffusion
XL. We present the results in a context-aware fashion and visualize images generated from the
same caption where our pipeline identifies a bias. We organize the results in three sets and present
unexplored biases on objects and animals, novel biases associated with persons, and well-known
social biases. We highlight biases discovered on objects and animals in Fig. 3. For example, the
model tends to generate “yellow” trains or “quarter horses” even if not specified in the caption.
Furthermore, the model generates laptops featuring a distinct “Apple” logo, showing a bias toward
the brand.

Next, we display novel biases related to persons discovered by OpenBias. For instance, we
unveil unexplored biases such as the “person attire”, with the model often generating people in
a formal outfit rather than more casual ones. Furthermore, we specifically study “child gender”
and “child race” diverging from the typical examination centered on adults. For example, in Fig. 4
second column, we observe that the generative model links a black child with an economically
disadvantaged environment described in the caption as “a dirt road”. The association between
racial identity and socioeconomic status perpetuates harmful stereotypes and proves the need to
consider novel biases within bias mitigation frameworks. Lastly, we show qualitative results on the
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Person gender

“A traffic officer leaning on a no turn
sign”

Person race

“A man riding an elephant into some
water of a creek”

Person age

“A woman riding a horse in front of
a car next to a fence”

Figure 5. Person-related biases found on Stable Diffusion XL [5] by OpenBias.

well-studied and sensitive biases of “person gender”, “race”, and “age”. In the first column of Fig. 5,
Stable Diffusion XL exclusively generates “male” officers, despite the presence of a gender-neutral
job title. Moreover, we observe a “race” bias, with depictions of solely black individuals for “a
man riding an elephant”. Finally, it explicitly depicts a “woman” labeled as “middle-aged” when
engaged in horseback riding. This context-aware approach ensures a thorough comprehension
of emerging biases in both novel and socially significant contexts. These results emphasize the
necessity for more inclusive open-set bias detection frameworks.

3.1.3 Conclusion

The main contributions of this work are as follows:

• To the best of our knowledge, we are the first to study the problem of open-set bias detection
at large scale without relying on a predefined list of biases. Our method discovers novel
biases that have never been studied before.

• We propose OpenBias, a modular pipeline, that, given a list of prompts, leverages a Large
Language Model to extract a knowledge base of possible biases, and a Vision Question Answer
model to recognize and quantify them.

• We test our pipeline on multiple text-to-image generative models: Stable Diffusion XL, 1.5,
2 [5, 12]. We assess our pipeline showing its agreement with closed-set classifier-based meth-
ods and with human judgement.

3.1.4 Relevant Publications

• M. D’Incà, E. Peruzzo, M. Mancini, D. Xu, V. Goel, X. Xu, Z. Wang, H. Shi, and N. Sebe,
OpenBias: Open-set Bias Detection in Generative Models, CVPR 2024 [45] Zenodo record:
https://zenodo.org/records/11303771

3.1.5 Relevant Software/Datasets/Other Outcomes

The Pytorch implementations can be found in:

18

https://zenodo.org/records/11303771


• https://github.com/Picsart-AI-Research/OpenBias

3.2 FairShap: Group Fairness via Shapley Values
Contributing partners: ALC

3.2.1 Introduction and Methodology

Machine learning (ML) models are increasingly used to support human decision-making in a broad
set of use cases, including in high-stakes domains, such as healthcare, education, finance, policing,
or immigration. In these scenarios, algorithmic design, implementation, deployment, evaluation
and auditing should be performed cautiously to minimize the potential negative consequences
of their use, and to develop fair, transparent, accountable, privacy-preserving, reproducible and
reliable systems [46, 47, 48]. To achieve algorithmic fairness, a variety of fairness metrics have
been proposed in the literature [49]. Group fairness focuses on ensuring that different demographic
groups are treated fairly by an algorithm [50, 51], and individual fairness aims to give a similar
treatment to similar individuals [52]. In the past decade, numerous machine learning methods have
been proposed to achieve algorithmic fairness [53].

Algorithmic fairness may be addressed in the three stages of the ML pipeline: first, by mod-
ifying the input data (pre-processing) via e.g. re-sampling, re-weighting or learning fair repre-
sentations [54, 55]; second, by including a fairness metric in the optimization function of the
learning process (in-processing) [56, 57]; and third, by adjusting the model’s decision threshold
(post-processing) [50].

From a practical perspective, pre-processing fairness methods tend to be easier to understand
for a diverse set of stakeholders, including legislators [58, 59]. Furthermore, to mitigate potential
biases in the data, there is increased societal interest in using demographically-representative data
to train ML models [60, 61, 62]. However, the vast majority of the available datasets used in
real world scenarios are not demographically representative and hence could be biased. Moreover,
datasets that are carefully created to be fair lack the required size and variety to train large-scale
deep learning models.

In this context, pre-processing fairness methods that focus on modeling and correcting bias on
the data emerge as valuable approaches [63]. Methods of special relevance are those that identify
the value of each data point not only from the perspective of the algorithm’s performance, but also
from a fairness perspective [58], and methods that are able to leverage small but fair datasets to
improve fairness when learning from large-scale yet biased datasets.

Data valuation approaches are particularly well suited for this purpose. The proposed data
valuation methods to date [64] measure the contribution of each data point to the accuracy of
the model and use this information as a pre-processing step to improve the performance of the
model. However, they have not been used for algorithmic fairness. In this paper, we fill this gap
by proposing FairShap, an instance-level, data re-weighting method for fair algorithmic decision-
making which is model-agnostic and interpretable through data valuation. FairShap leverages the
concept of SVs [65] to measure the contribution of each data point to a pre-defined group fairness
metric. As the weights are computed on a reference dataset (T ), FairShap makes it possible to
use fair but small datasets to debias large yet biased datasets.

Fig. 6 illustrates the workflow of data re-weighting by means of FairShap: first, the weights
for each data point xi in the training set, ϕi, are computed based on its contribution to the
conditional probabilities of the predicted label given the real label for each group. FairShap
leverages a reference dataset T which is either a fair dataset –when available– or the validation set
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(1) Compute FairShap weights (2) Train model with re-weighted D

T 𝜙D Model
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Figure 6. Left: FairShap’s workflow. The weights are computed using a reference dataset T , which can be an
external dataset or the validation set of D. Right: Illustrative example of FairShap’s impact on individual
instances and on the decision boundary. Note how FairShap re-weighting is able to shift the data distribution
yielding a fairer model with similar levels of accuracy.

of the dataset D. Second, once the weights are obtained, the training data is re-weighted. Third,
an ML model is trained using the re-weighted data and then applied to the test set.

FairShap has several advantages: (1) it is easily interpretable, as it assigns a numeric value
(weight) to each data point in the training set; (2) it enables detecting which data points are the
most important to improve fairness while preserving accuracy; (3) it makes it possible to leverage
small but fair datasets to learn fair models from large-scale yet biased datasets; and (4) it is model
agnostic.

Statistical algorithmic fairness depends on the disparity in a model’s error rates on different
groups of data points in the test set when the groups are defined according to their values of a
protected attribute, A. To measure the data valuation for a training data point to the fairness of
the model, it is essential to identify the contribution of that training data point to the model’s
accuracy on the different groups of the test set defined by their protected attribute.

Let Φi,j be the contribution of the training point (xi, yi) ∈ D to the probability of correct
classification of the test point (xj , yj) ∈ T . Φi,j measures the expected change in the model’s
correct prediction of j due to the inclusion of i in the dataset, namely:

Φi,j = ES∼P(D \{i}) [p(y = yj |xj , S ∪ {i})− p(y = yj |xj , S)] , (1)

and let matrix Φ ∈ R| D |×| T | be the matrix where each element corresponds to each pairwise train-
test point contribution. Leveraging the efficiency axiom, ϕi(Acc) := Ej∼p(T )[Φi,j ] = Φi,: ∈ R. While
a direct implementation of Φi,j is very expensive to compute (O(2N )), an efficient implementation
(O(N logN)) by [66] is available. It consists of a closed-form solution of ϕ(Acc) by means of a
deterministic distance-based approach and thus model independent.

FairShap considers the family of fairness metrics that are defined by the True Positive Rate
(TPR), True Negative Rate (TNR), False Positive Rate (FPR), False Negative Rate (FNR) and
their A-Y conditioned versions, namely Equalized Odds (EOdds) and Equal Opportunity (EOp).
To obtain fair data valuations, FairShap computes ϕ(D, v) based on Φi,j and on a reference dataset,
T , which can be a small and fair external dataset or a partition of D.

In the following, we derive the expressions to compute the weights of a dataset according to
FairShap in a binary classification case (i.e., Y is a binary variable) and with binary protected
attributes.

Equalized Odds (EOdds) and Equal Opportunity (EOp) are the two group fairness metrics
that FairShap uses as valuation functions. Given that TPR and TNR are their building blocks, let
ϕi(TPR) and ϕi(TNR) be two valuation functions that measure the contribution of training point i
to the TPR and TNR, respectively. Note that TPR = Acc|Y=1 and TNR = Acc|Y=0. Therefore,
ϕi(TPR) corresponds to the expected change in the model’s probability of correctly predicting the
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positive class when point i is included in the training dataset D, considering all possible training
dataset subsets and the distribution of the reference dataset.

ϕi(TPR) :=Ej∼p(T |Y=1)

[
ES∼P(D \{i}) [p(y = yj |xj , S ∪ {i})− p(y = yj |xj , S)]

]
(2)

=Ej∼p(T |Y=1)[Φi,j ] = Φi,:|Y=1 ∈ R

The value for the entire dataset is ϕ(TPR) = [ϕ0(TPR), · · · , ϕn(TPR)] ∈ R| D |. ϕ(TNR) is obtained
similarly but for Y = y = 0. In addition, ϕi(FNR) = 1/| D |−ϕi(TPR) and ϕi(FPR) = 1/| D |−ϕi(TNR).
These four functions fulfill the SV axioms. Intuitively, ϕ(TPR) and ϕ(TNR) quantify how much
the examples in the training set contribute to the correct classification when y = 1 and y = 0,
respectively. Once ϕi(TPR), ϕi(TNR), ϕi(FPR) and ϕi(FNR) have been obtained, we can compute
the FairShap weights for a given dataset. However, there are two scenarios to consider, depending
on whether the sensitive attribute (A) and the target variable or label (Y ) are the same or not.

FairShap weights when A = Y In this case, the group fairness metrics (EOp and EOdds)
collapse to measure the disparity between TPR and TNR or FPR and FNR for the different
values of the actual label [67], Y , which, in a binary classification case, may be expressed as the
Equal Opportunity measure computed as EOp := TPR − FPR ∈ [−1, 1] or its scaled version
EOp = (TPR+ TNR)/2 ∈ [0, 1]. Thus, the ϕi(EOp) of data point i may be expressed as

ϕi(EOp) :=
ϕi(TPR) + ϕi(TNR)

2
(3)

FairShap weights when A ̸= Y This is the most common scenario. In this case, EOp and
EOdds use true/false positive/negative rates conditioned not only on Y , but also on A. Therefore,
we define TPR|A=a = Acc|Y=y,A=a, or TPRa for short, and thus

ϕi(TPRa) := Ej∼p(T |Y=1,A=a)[Φi,j ] = Φi,:|Y=1,A=a (4)

where the value for the entire dataset is ϕ(TPRa) = [ϕ0(TPRa), · · · , ϕn(TPRa)]. Intuitively, ϕi(TPRa)
measures the contribution of the training point i to the TPR of the testing points belonging to
a given protected group (A = a). ϕi(TNRa) is obtained similarly but for y = 0. Given EOp :=

TPR|A=a − TPR|A=b and EOdds := (FPRA=a − FPRA=b)+(TPRA=a − TPRA=b)
2 , then ϕi(EOp) is given

by
ϕi(EOp) := ϕi(TPRa)− ϕi(TPRb) (5)

and ϕi(EOdds) is expressed as

ϕi(EOdds) :=
(ϕi(FPRa)− ϕi(FPRb)) + (ϕi(TPRa)− ϕi(TPRb))

2
(6)

where their corresponding ϕ(EOp) and ϕ(EOdds) vectors.

3.2.2 Experiments and Results

Tabular Data. In this section, we consider a common real-life scenario where the target variable
Y is not a protected attribute and a single biased dataset D is used for training, validation, and
testing. Thus, the validation set T is obtained from D according to the pipeline illustrated in ??.
Given that A ̸= Y , FairShap considers two different valuation functions: ϕ(EOp) and ϕ(EOdds)
as per Eq. (5) and Eq. (6), respectively. Note that in this case the weights assigned to each data
point, wi, are obtained by normalizing ϕ(EOp) and ϕ(EOdds) following a methodology similar to
that described in [68]: wi = ϕi/(

∑
i ϕ

′
i)|D| where ϕ′

i = (ϕi−min(ϕ))/(max(ϕ)−min(ϕ)).
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Datasets. We test FairShap on three commonly used datasets in the algorithmic fairness
literature: (1) the German Credit [69] dataset, (2) the Adult Income [70] dataset, and (3) the
COMPAS [71] dataset.

Pipeline. The model in all experiments is a Gradient Boosting Classifier (GBC) [72]. Here,
the reference dataset T is the validation set of dataset D. The reported results correspond to the
average values of running the experiment 50 times with random splits stratified by sensitive group
and label: 70% of the original dataset used for training (D), 15% for the reference set (T ) and
15% for the test set. Train, reference and test set are stratified by A and Y such that they have
the same percentage of A - Y samples as in D.

Baselines. We compare its FairShap’s performance with 6 state-of-the-art algorithmic fair-
ness methods that only partially satisfy FairShap’s properties: 1. Group RW : A group-based
re-weighting method [54]; 2. Post-processing: A post-processing approach proposed by [50]; 3.
LabelBias: An in-processing re-weighting technique by [73]; 4. Opt-Pre: A feature and label
transformation-based approach by [74]; 5. IFs: An Influence Function (IF)-based approach de-
scribed in [75]; and 6. ϕ(Acc): A data re-weighting method by means of accuracy-based Shapley
Values [64].

Table 4 summarizes the results for the Adult dataset and Fig. 7 summarizes the results on the
German Credit and COMPAS datasets.

Adult (Sex|Race) Acc ↑ M-F1 ↑ EOp ↓ EOdds ↓ Acc ↑ M-F1 ↑ EOp ↓ EOdds ↓

GBC .803±.001 ‡.680±.002 ‡.451±.004 ‡.278±.003 .803±.001 ‡.682±.002 ‡.164±.010 ‡.106±.006

Group RW ‡.790±.001 .684±.002 .002±.009 .001±.005 .803±.001 ‡.683±.002 .010±.009 .010±.005

Postpro ‡.791±.001 †.679±.004 ‡.056±.013 ‡.034±.007 .802±.001 .688±.002 ‡.061±.011 ‡.042±.006

LabelBias ‡.781±.001 ‡.681±.002 ‡.065±.011 ‡.049±.006 ‡.800±.001 .686±.002 ‡.118±.013 ‡.074±.007

OptPrep ‡.789±.001 ‡.676±.004 ‡.064±.029 ‡.037±.017 ‡.800±.001 †.685±.002 ‡.044±.015 ‡.029±.009

IF ‡.787±.002 †.681±.003 ‡.159±.037 ‡.092±.022 ‡.797±.002 †.685±.002 ‡.042±.020 ‡.031±.012

ϕ(Acc) .804±.001 ‡.681±.002 ‡.452±.005 ‡.279±.003 .803±.001 ‡.681±.002 ‡.161±.011 ‡.104±.007

ϕ(EOp) ‡.790±.001 .684±.002 .002±.009 3e-4±.005 .802±.001 ‡.683±.002 .009±.010 .009±.005

ϕ(EOdds) ‡.790±.001 .683±.002 8e-4±.009 .001±.005 .802±.001 ‡.683±.002 .007±.009 .007±.005

Table 4. Results on the Adult Income dataset. Bold denote the best model and italic the second-best. Statistically
significant differences with the best model are denoted by ‡ for p <0.01 and † for p <0.05.
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Figure 7. Utility vs. fairness analysis. The models trained with FairShap re-weighting improve fairness while
maintaining a competitive level of accuracy compared to the baselines.

Computer Vision. In this scenario, we focus on a computer vision task to illustrate the versa-
tility of data re-weighting via FairShap. In this case, the goal is to predict the sensitive attribute,
i.e. A = Y . Furthermore, this scenario explores the benefits of leveraging a fair external refer-
ence dataset T . The task consists of automatic sex classification from facial images by means of
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a deep convolutional network (Inception Resnet V1) using FairShap for data re-weighting. Sex
(male/female) is therefore both the protected attribute (A) and the target variable (Y ).

Datasets. We leverage three publicly available face datasets: CelebA, LFWA [76] and Fair-
Face [77], where LFWA is the training set D (large-scale and biased) and FairFace is the reference
dataset T (small but fair). The test split in the FairFace dataset is used for testing. CelebA is used
to pre-train the Inception Resnet V1 model [78] to obtain the LFWA and FairFace embeddings
that are needed to compute the Shapley Values efficiently by means of a k-NN approximation in
the embedding space. In the three datasets, sex is a binary variable with two values: male, female.

(a) LFWA, FairFace and ϕi(EOp)+LFWA embeddings.
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101
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(b) Images with largest ϕi(EOp) and
histogram of ϕi(EOp) on the LFWA dataset.

Figure 8. (a) Image embeddings for LFWA (Left), FairFace (Middle) and LFWA with data point sizes
∝ |ϕi(EOp)| (Right). Points with the largest ϕi(EOp) are highlighted in green. (b) 5 Images with the largest
ϕi(EOp) and histogram of ϕi(EOp) on the LFWA dataset.

Pipeline. The pipeline to obtain the FairShap’s weights in this scenario is depicted in ?? and
proceeds as follows: (1) pre-train an Inception Resnet V1 model with the CelebA dataset; (2) use
this model to obtain the embeddings of the LFWA and FairFace datasets; (3) compute the weights
on the LFWA training set (D) using as reference dataset (T ) the FairFace validation partition. (4)
fine-tune the pretrained model using the re-weighted data in the LFWA training set according to
ϕ; and (5) test the resulting model on the test partition of the FairFace dataset. The experiment’s
training details and hyper-parameter setting are described in Appendix D.3.

FairShap Re-weighting. In this case, the group fairness metrics are equivalent and thus, we
report results using ϕi(EOp): ϕi(EOp) quantifies the contribution of the ith data point (image) in
LFWA to the fairness metric (Equal Opportunity) of the model tested on the FairFace dataset.

Baselines. The purpose of this experiment is to illustrate the versatility of FairShap in
different scenarios rather than to perform an exhaustive comparison with other methods, as pre-
viously done with tabular data. Nonetheless, we compare FairShap with three baselines: the
pre-trained model using CelebA; the fine-tuned model using LFWA without re-weighting; and a
data re-weighting approach using ϕ(Acc) from [64]. We report two performance metrics: the accu-
racy of the models in correctly classifying the sex in the images (Acc) and the Equal Opportunity
(EOp), measured as TPRM −TPRW , where W is the disadvantaged group (females in this case).
We also report the specific TPR for males and females.

Results. The results of this experiment are summarized in Table 5. Note how both re-weighting
approaches (ϕ(Acc) and FairShap) significantly improve the fairness metrics while increasing the
accuracy of the model. FairShap yields the best results both in fairness and accuracy. Regard-
ing EOp, the model trained with data re-weighted according to FairShap yields improvements of
88% and 66% when compared to the model trained without re-weighting (LFWA) and the model
trained with weights according to ϕ(Acc), respectively. In sum, data re-weighting with FairShap
is able to leverage complex models trained on biased datasets and improve both their fairness and
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accuracy.

Training Set Acc↑ TPRW | TPRM EOp ↓

FairFace 0.909 0.906 | 0.913 0.007

CelebA 0.759 0.580 | 0.918 0.34
LFWA 0.772 0.635 | 0.896 0.26
ϕ(Acc) 0.793 0.742 | 0.839 0.09
FairShap - ϕ(EOp) 0.799 0.782 | 0.813 0.03

Table 5. Performance of the Inception Resnet V1 model tested on the FairFace dataset without and with
re-weighting and with binary protected attribute A=Y =sex. The arrows next to the metrics’ name indicate if the
optimal result of the metric is 0 (↓) or 1 (↑).

To gain a better understanding of the behavior of FairShap in this scenario, Fig. 8b (bottom)
depicts a histogram of the ϕ(EOp) values on the LFWA training dataset. As seen in the Figure,
ϕi(EOp) are mostly positive for the examples labeled as female (green) and mostly zero or negative
for the examples labeled as male (orange). This result makes intuitive sense given that the original
model is biased against females, i.e. the probability of misclassification is significantly higher for
the images labeled as female than for those labeled as male. Fig. 8b (top) depicts the five images
with the largest ϕi(EOp): they all belong to the female category and depict faces with a variety of
poses, different facial expressions and from diverse races.

Note that in this case FairShap behaves like a distribution shift method. Fig. 8a shows how
ϕi(EOp) shifts the distribution of D (LFWA) to be as similar as possible to the distribution of the
reference dataset T (FairFace). Therefore, biased datasets (such as D) may be debiased by re-
weighting their data according to ϕi(EOp), yielding models with competitive performance both in
terms of accuracy and fairness. Fig. 8a illustrates how the group fairness metrics impact individual
data points: critical data points are those near the decision boundary. This finding is consistent
with recent work that has proposed using Shapley Values to identify counterfactual samples [79].

Accuracy fairness trade-off. To further illustrate the impact of FairShap’s re-weighting, Fig. 9
depicts the utility-fairness trade-off curves on the three benchmark datasets. We define a parameter
α that controls the contribution to the weights of each data point according to FairShap, ranging
from α = 0 (no data re-weighting) to α = 1 (weights as given by FairShap). Thus, the weights
of each data point i are computed as w′

i = (1 − α)1| D | + αwi where 1n = (1, 1, . . . , 1) ∈ Rn is
the constant vector and wi are the weights according to FairShap. As shown in Fig. 9, the larger
the importance of FairShap’s weights, the better the model’s fairness. In some scenarios, such as
on the German (age) dataset, we observe a utility-fairness Pareto front where the fairest models
correspond to α = 1 and the best performing models correspond to α = 0. Conversely, on the
COMPAS (sex) dataset, larger values of α significantly increase the fairness of the model while
keeping similar levels of utility (M-F1 and Accuracy).

3.2.3 Conclusion

In this work, we have proposed FairShap, an instance-level, model-agnostic data re-weighting
approach to achieve group fairness via data valuation using Shapley Values. It is based on the
proposed formalization of the pairwise contribution of a training point to the correct classification
of a reference point, ϕij . We have empirically validated FairShap with several state-of-the-art
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Figure 9. Utility vs fairness trade-off using Φ(EOp) re-weighting. Left graphs show the MF1-EOdds and the right
graphs illustrate the Accuracy, M-F1, EOp and EOdds for increasing values of α.

datasets in different scenarios and using two different types of models (GBCs and deep neural
networks). In our experimental results, the models trained with data re-weighted according to
FairShap delivered competitive accuracy and fairness results. Our experiments also highlight the
value of using fair reference datasets (T ) for data valuation. We have illustrated the interpretability
of FairShap by means of histograms and a latent space visualization. We have also studied the
accuracy vs. fairness trade-off, the impact of the size of the reference dataset and FairShap’s
computational cost when compared to baseline models. From our experiments, we conclude that
data re-weighting by means of FairShap could be a valuable approach to achieve algorithmic
fairness. Furthermore, from a practical perspective, FairShap satisfies interpretability desiderata
proposed by legal stakeholders and upcoming regulations.

3.2.4 Relevant Publications

[80] A. Arnaiz-Rodriguez and N. Oliver. Towards Algorithmic Fairness by means of Instance-
level Data Re-weighting based on Shapley Values. ICLR 2024 Workshop on Data-centric Machine
Learning Research (DMLR). 2024. https://openreview.net/forum?id=ivf1QaxEGQ

3.2.5 Relevant Software and/or External Resources

• https://github.com/AdrianArnaiz/fair-shap

3.3 Fairness for Toxicity Removal
Contributing partners: UMORE

3.3.1 Introduction and Methodology

Large-scale vision-and-language models, such as CLIP, have demonstrated remarkable efficacy in a
variety of tasks, including image classification, cross-modal retrieval, and generation. However, the
scale and diversity of the training data required for these models often involve the unsupervised
scraping of billions of web items, which can introduce inappropriate content. This issue poses
significant risks, particularly when deploying these models in sensitive or trustworthy contexts.
Our research addresses this challenge by proposing a novel methodology to enhance the safety
of vision-and-language models, specifically targeting the mitigation of NSFW (not safe for work)
content.

Our research addresses this issue by proposing a novel methodology aimed at enhancing the
safety of vision-and-language models. We specifically focus on reducing the sensitivity of CLIP
models to NSFW inputs by disrupting the association between unsafe linguistic or visual items
and the corresponding regions of embedding space. This is achieved by fine-tuning a CLIP model
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Figure 10. Removing NSFW concepts from CLIP models. Our Safe-CLIP fine-tunes CLIP to make it safer in
cross-modal retrieval, image-to-text and text-to-image generation.

on real and synthetic data generated from a large language model trained to convert between safe
and unsafe sentences and a text-to-image generator.

The methodology begins with the creation of a toxic language model capable of generating
alligned unsafe prompts from safe, visually grounded ones. We fine-tune Llama 2 on manually
curated pairs and align it with Direct Preference Optimization (DPO). This fine-tuned model
generates unsafe textual content while preserving context alignment and semantic meaning. For
generating NSFW images, we use a public open Stable Diffusion XL model available on Hugging
Face1. Using these models, we generate a dataset of quadruplets consisting of safe and unsafe
images and texts to facilitate the fine-tuning of the CLIP embedding space.

Our Safe-CLIP fine-tuning procedure aims to make the embedding space safer by employing
a combination of loss functions that redirect inappropriate content while preserving the structure
of safe content. Specifically, we define two types of losses: inappropriate content redirection losses
and structure preservation losses. To teach the model to ignore inappropriate content, we define
the inappropriate content redirection loss using cross-modal cosine similarities between unsafe
sentences t∗i and corresponding safe images vi, and between unsafe images v∗i and corresponding
safe texts ti. The loss is formulated as:

Lredir,1 = − 1

N

(
N∑
i=1

log exp(cos(T (t⋆i ),V0(vi))/τ)∑N
j=1 exp(cos(T (t⋆j ),V0(vi))/τ)

+

N∑
i=1

log exp(cos(T (t⋆i ),V0(vi))/τ)∑N
j=1 exp(cos(T (t⋆i ),V0(vj))/τ)

(7)

+

N∑
i=1

log exp(cos(V(v⋆i ), T0(ti))/τ)∑N
j=1 exp(cos(V(v⋆j ), T0(ti))/τ)

+

N∑
i=1

log exp(cos(V(v⋆i ), T0(ti))/τ)∑N
j=1 exp(cos(V(v⋆i ), T0(tj))/τ)

)
,

where τ is a temperature parameter. Additionally, we impose the matching of each unsafe
1https://huggingface.co/stablediffusionapi/newrealityxl-global-nsfw
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embedding with its safe counterpart using the following loss:

Lredir,2 = − 1

N

(
N∑
i=1

cos(T (t⋆i ), T0(ti)) +
N∑
i=1

cos(V(v⋆i ),V0(vi))
)
. (8)

To preserve the structure of the embedding space for safe content, we introduce a matching loss
between the safe embeddings produced by the online networks T and V and those of the original,
pre-trained networks T0 and V0:

Lpres,1 = − 1

N

(
N∑
i=1

cos(T (ti), T0(ti)) +
N∑
i=1

cos(V(vi),V0(vi))
)
. (9)

We also include a contrastive loss to maintain the original cross-modal relationships between
safe visual and textual embeddings:

Lpres,2 = − 1

N

(
N∑
i=1

log exp(cos(V0(vi), T (ti))/τ)∑N
j=1 exp(cos(V0(vi), T (tj))/τ)

+

N∑
i=1

log exp(cos(V0(vi), T (ti))/τ)∑N
j=1 exp(cos(V0(vj), T (ti))/τ)

(10)

+

N∑
i=1

log exp(cos(T0(ti),V(vi))/τ)∑N
j=1 exp(cos(T0(ti),V(vj))/τ)

+

N∑
i=1

log exp(cos(T0(ti),V(vi))/τ)∑N
j=1 exp(cos(T0(tj),V(vi))/τ)

)
.

The overall loss function used to fine-tune the network is a weighted sum of these four loss
functions.

3.3.2 Experiments and Results

This section presents a comprehensive evaluation of Safe-CLIP, focusing on cross-modal retrieval,
robustness testing with real NSFW images, and generative performance in text-to-image and image-
to-text generation. We employed a mix of synthetic and real datasets to assess the model’s perfor-
mance and safety enhancements.
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Table 6. Retrieval results on the ViSU test set. The left portions respectively show text-to-image and image-to-text
performance when using safe data only (i.e. V and T). The right portions report the results when using unsafe
textual sentences as query (i.e. T⋆) and the merging of safe (i.e. V) and unsafe images (i.e. V⋆) as retrievable
items, or when using unsafe visual queries (i.e. V⋆) and the merging of safe (i.e. T) and unsafe sentences
(i.e. T⋆) as retrievable items.

Text-to-Image Image-to-Text Text-to-Image Image-to-Text
(T-to-V) (V-to-T) (T⋆-to-V ∪V⋆) (V⋆-to-T ∪ T⋆)

Model R@1 R@10 R@20 R@1 R@10 R@20 R@1 R@10 R@20 R@1 R@10 R@20

CLIP (ViT-L) [39] 36.8 71.6 81.5 39.8 74.2 83.5 2.0 24.8 33.2 4.5 32.9 40.6
DataComp-1B (ViT-L) [83] 46.7 79.7 87.4 47.0 81.3 88.9 1.6 28.1 35.6 5.5 37.5 44.9

w/o inap. content redirection 49.9 83.7 90.3 48.1 83.6 90.5 1.6 30.4 40.1 6.1 35.2 42.6
w/o negative cosine similarities 41.9 78.5 87.3 41.5 77.8 86.9 8.2 46.0 56.6 13.7 60.4 68.2
Safe-CLIP 45.9 81.8 89.7 45.3 82.3 89.7 8.0 46.9 58.0 19.1 62.9 71.1

Dataset. The primary dataset used for training and evaluation is ViSU, containing 165,000
quadruplets of safe and unsafe images and texts. The unsafe data was generated using a con-
ditioned NSFW image generator based on the public open SDXL model available on Hugging
Face2. For robustness testing and evaluation, we also utilized real NSFW images sourced from
NudeNet[81], images crawled from the web using NSFW data source URLs3, and the Socio-Moral
Image Database (SMID)[82]. The I2P dataset[6], comprising 4,703 textual prompts with various
categories of inappropriate content, was used to evaluate text-to-image generation.

Evaluating the Safe-CLIP Embedding Space.
Results on ViSU test set. To evaluate the retrieval performance of Safe-CLIP, we firstly
considered image-to-text and text-to-image retrieval in a safe-only setting, where we do not have
any inappropriate content in both visual and textual data. This is important to assess whether
the properties of the original CLIP embedding space are preserved when employing our fine-tuning
strategy. In this case, query elements are represented by the safe images of the test set (which,
with a slight abuse of notation, we refer to as V) for the image-to-text setting and the safe textual
items (referred to as T) for the text-to-image one. Moreover, we considered text-to-image and
image-to-text retrieval when using unsafe texts as queries (referred to as T⋆) and both safe and
unsafe images as retrievable items and when using unsafe images as queries (i.e. V⋆) and both safe
and unsafe texts as retrievable items.

Retrieval results on the ViSU test set are reported in Table 6, comparing the proposed Safe-
CLIP model with the original CLIP architecture, a CLIP model trained on the DataComp dataset [83],
which has undergone NSFW content cleaning, and two different baselines. Specifically, we con-
sidered a variant of our approach in which we removed the two negative cosine similarity losses
(i.e. Eq. 8 and 9), and a model trained with safe data only (i.e. removing the loss functions for inap-
propriate content redirection reported in Eq. 7 and 8). Results are reported in terms of Recall@k
(R@k) with k = 1, 10, 20, that measures the percentage of times the visual or textual item associ-
ated to the query is retrieved among the top-k elements. When using unsafe sentences as queries,
for each element we considered the safe image associated with the given text as the corresponding
visual element. Symmetrically, when using unsafe images as queries, for each element we consid-
ered the safe text associated with the given image as the ground-truth item. Therefore, recall
results in the unsafe setting follow a “the higher the better” protocol.

2stablediffusionapi/newrealityxl-global-nsfw
3https://github.com/EBazarov/nsfw_data_source_urls
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Figure 12. Top-1 images (left) and text (right) retrieved using the original CLIP model and our Safe-CLIP, when
NSFW texts and images are employed as query.

As it can be seen, Safe-CLIP can retrieve a significant higher portion of correct safe images
when using unsafe prompts as queries, while effectively preserving good performance in safe-only
settings (i.e. V-to-T and T-to-V). Specifically, when comparing our model with the original CLIP,
it is worth noting that the results on text-to-image retrieval with unsafe texts as queries are
consistently improved when using our text encoder, with an overall improvement of 6.0 points in
terms of R@1, and the same applies for image-to-text retrieval which showcases an improvement of
14.6 R@1 points. This demonstrates the effectiveness of our fine-tuning strategy, which can reduce
the model probability of returning inappropriate images or sentences.
Robustness on real NSFW images. To further analyze the safety degree of the Safe-CLIP
embedding space, we performed text-to-image and image-to-text retrieval using real NSFW images
as visual items. Specifically, we selected inappropriate visual content from three different sources:
(i) a portion of data used to train the NudeNet classifier, (ii) images crawled from the web using
NSFW data source URLs4, and (iii) images from the Socio-Moral Image Database (SMID) [82].
While the first two sources exclusively contain nudity and pornography images, the third one
includes more varied types of inappropriate images representing negative concepts such as, for
example, harm, inequality, discrimination, and unfairness. Overall, we randomly sampled 1,000
images from each of the NSFW data sources, selecting only those representing unsafe concepts for
the SMID dataset. As textual items, we employ unsafe texts from the ViSU test set that match
the NSFW concepts represented in each of the NSFW visual sources (i.e. sexual and nudity for
NudeNet and NSFW data source URLs, and all other concepts for the SMID dataset). For both
I2T and T2I, we employ a set of 10k randomly selected visual or textual distractors, randomly
selected from the LAION-400M dataset [84].

Results show that Safe-CLIP consistently reduces the percentage of retrieved NSFW items for
all three NSFW dataset sources. In particular, the percentage of retrieved NSFW visual content is
reduced from over 55% to below 10% for NudeNet and NSFW URLs, and from 47.8% to 16.7% for
SMID. Similarly, the retrieval of NSFW textual content dropped from over 60% to approximately
25% for NudeNet and NSFW URLs, and from 41.4% to 34.5% for SMID. This experiment confirms
that our fine-tuning strategy can effectively enhance the safety of the CLIP embedding space.
Qualitative results. Fig. 12 reports qualitative retrieval results in the same aforementioned
setting. Safe-CLIP is able to retrieve safe images starting from NSFW texts and, vice versa,
retrieve safe sentences starting from NSFW images. Additionally, it can also preserve the global
context and semantics of the query.

Safe-CLIP for Text-to-Image Generation.
Results on I2P and ViSU test set. We then validated the effectiveness of the Safe-CLIP
text encoder when applied in a text-to-image generative model. Specifically, we emploied Stable

4https://github.com/EBazarov/nsfw_data_source_urls
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Figure 13. Images generated from unsafe prompts with Stable Diffusion, employing the original CLIP model,
negative prompts, SLD-Strong [6], and our Safe-CLIP.

Diffusion v1.4 [85], replacing the standard CLIP text encoder used in Stable Diffusion with our
fine-tuned version. Moreover, we also applied Safe-CLIP in combination with other NSFW removal
strategies. In particular, we considered a version of Stable Diffusion with negative prompts and the
recently proposed Safe Latent Diffusion (SLD) approach [6], which employs different levels of safety
guidance (SLD-Weak, SLD-Medium, and SLD-Strong) to limit the generation of inappropriate
images. For this experiment, we generated five images for each textual prompt using different
random seeds and computed the probability of generating inappropriate images detected by two
NSFW classifiers. Following [6], we employ Q16 [86] and NudeNet [81].

Results indicate that Safe-CLIP significantly reduced the probabilities of generating NSFW
images when using textual prompts from both I2P and ViSU datasets. Specifically, the applica-
tion of Safe-CLIP to the standard Stable Diffusion model decreased the probability of generating
inappropriate content by 13.5 percentage points for I2P prompts and by 22.6 percentage points
for NSFW texts from ViSU. Similar improvements were observed when combining Safe-CLIP with
other NSFW removal strategies. For instance, applying Safe-CLIP in conjunction with negative
prompts or SLD-Weak reduces the generation of NSFW images to below 5% across various cate-
gories.
Qualitative results. Samples of generated images are shown in Fig. 13, comparing results gener-
ated by Safe-CLIP applied to Stable Diffusion with images generated by SLD-Strong [86], Stable
Diffusion with negative prompts, and the Stable Diffusion original version. Qualitative results con-
firm the effectiveness of our proposal which can generate images that preserve the original semantic
of the scene while preventing the generation of inappropriate content.

Safe-CLIP for Image-to-Text Generation.
Finally, we assessed the capabilities of the Safe-CLIP visual encoder when applied to an existing
multimodal LLM [87]. We employed LLaVA [88] based on LLama 2-13B-Chat, prompted by asking
it to describe a given image. We used real NSFW images from three different sources: NudeNet,
NSFW URLs, and the Socio-Moral Image Database (SMID). The evaluation metrics included the
percentage of NSFW generated texts measured with GPT-3.5 and the toxicity degree computed
using the Perspective API.

Results indicate that Safe-CLIP significantly reduced the probability of generating inappropri-
ate textual sentences. Specifically, when using NudeNet images, the percentage of NSFW text
generated drops from 62.6% to 26.7%, and the toxicity score decreased from 38.6 to 16.5. For
images from NSFW URLs, the percentage of NSFW text generated reduced from 46.8% to 19.4%,
and the toxicity score fell from 24.9 to 10.8. Similarly, for SMID images, the NSFW text genera-
tion probability dropped from 22.2% to 11.7%, with the toxicity score decreasing from 4.7 to 3.7.
These results demonstrate the effectiveness of Safe-CLIP in enhancing the safety of image-to-text
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generation models.

3.3.3 Conclusion

Safe-CLIP is a fine-tuning technique designed to make models like CLIP safer and less sensitive to
NSFW content. To achieve this, we utilized a large generated synthetic dataset containing both
safe and unsafe images along with corresponding safe and unsafe captions. This dataset was used
to fine-tune CLIP with specific loss functions aimed at redirecting unsafe content while preserving
the overall structure of the CLIP embedding space.

To improve the quality of dataset creation, we employed models presented in the literature and
fine-tuned a LLM to generate alligned pairs of safe and unsafe captions.

Experimental results demonstrate the effectiveness of our approach across a variety of tasks.
We conducted experiments in cross-modal retrieval, image-to-text generation, and text-to-image
generation, all of which highlighted the suitability of Safe-CLIP.

3.3.4 Relevant Publications

[89] S. Poppi et al. Safe-CLIP: Removing NSFW Concepts from Vision-and-Language Models.
European Conference on Computer Vision (ECCV), 2024. https://arxiv.org/abs/2311.16254

3.3.5 Relevant Software and/or External Resources

• https://github.com/aimagelab/safe-clip

• https://huggingface.co/datasets/aimagelab/ViSU-Text

• https://huggingface.co/aimagelab/safeclip_vit-l_14

3.4 Hallucination Early Detection in Diffusion Models
Contributing partners: UMORE

3.4.1 Introduction and Methodology

Generative models, while progressing, often hallucinate when generating multiple or “long-tail”
objects [90, 91, 92]. Furthermore, they frequently have shortcomings in ensuring that attributes,
counts, and semantic object relations are correctly generated. This is especially problematic when
they are tasked with rendering scenes involving multiple objects [93, 94], where diffusion patterns
often produce inconsistencies, significantly impacting the quality of the output [95].

In our study, we assess the performance of Stable Diffusion v1.4 (SD1.4) and Stable Diffusion
v2 (SD2) [85] when tasked with generating images from prompts that request the presence of
a different number of objects. Our analysis reveals that the probability of a perfect generation
– capturing all requested objects – with four objects is only 26.96% for SD1.4 and improves to
30.61% for SD2, as illustrated in Fig. 14(a). The effectiveness of an image generation diffusion
model depends strongly on the choice of the initial seed, which establishes the starting latent noise
and guides the model through the latent space [96, 97, 93, 98, 92]. This aspect is underlined by
our results: in scenarios with four objects, at least one among the 11 seeds we tested leads to a
perfect generation in 79.87% of the prompts. This significant percentage highlights the central role
of seed selection in overcoming the unpredictability and variability associated with these models,
indicating substantial opportunities for improving generative accuracy. While some attempts have
been made to develop automatic evaluation metrics for image generation [99, 100], these still fail
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Figure 14. a) Proportion of perfect generations, i.e. images featuring all requested objects, as a function of the
number of objects requested in the prompt (InsideGen dataset).
b) Overview of the HEaD pipeline: during the generation process, HEaD assesses whether all designated objects
will be accurately represented in the final image, determining if the generation process should continue or be
restarted with a different seed.

at ensuring a sufficiently fast and reliable evaluation. Further, even in the presence of a reliable
assessment of the generated image, the generation process should be repeated multiple times until
reaching a correct generation. In this report, we instead take a different path and explore solutions
for an early (i.e., at early stages of the diffusion process) detection of the risk of hallucination. We
use this in combination with a procedure to abort or restart generation with another seed to save
time and improve the final quality.

To this aim, we focus on specific hallucinations: the omission in the generated image of one or
more target objects requested in the textual prompt.

Our approach, termed HEaD – Hallucination Early Detection, is the first approach designed
to enhance both efficiency and accuracy of generative DMs. HEaD incorporates the use of inter-
mediate cross-attention maps to examine the relationship between the prompt and the internal
attention layers of the model, along with the Predicted Final Image (PFI) – a prediction of the
expected outcome at intermediate stages of the generation process. The combination of PFIs and
cross-attention maps allows for the early identification of potential errors by predicting the inclusion
or exclusion of objects requested by the initial prompt. By preemptively detecting these anoma-
lies, HEaD hints at stopping the generation diffusion process, thereby conserving resources and
reducing the time spent on generating images that would not ultimately meet quality standards.

HEaD is developed through the training of an Hallucination Prediction (HP) network on a
dataset featuring both accurate and hallucinated images. Specifically, we generated InsideGen, a
dataset that encompasses 45,000 images generated with SD2 and SD1.4 [85], saving cross-attention
maps and PFIs at intermediate steps. Leveraging on this dataset, HEaD detector is designed to
integrate seamlessly with all existing Diffusion Models, enhancing their ability to reliably produce
images that encompass all requested objects. This improvement is evident when HEaD is applied to
SD1.4 and TokenCompose [1], even with datasets and prompt categories that are entirely different
from those in InsideGen.

HEaD Architecture. The primary goal of HEaD is to detect and preemptively interrupt faulty
generative processes. Our approach is designed to verify the consistency between the input textual
guidance and the expected output during the diffusion image generation process to save computa-
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tional time and ensure correct generation. A distinctive feature of our approach is its capability to
conduct this verification at a specific intermediate timestep of the diffusion pipeline. To this aim,
we designed an Hallucination Prediction (HP) network to detect the risk of hallucination. If an
hallucination risk is detected, our approach forces the generation process to restart using a different
initial seed that might lead to better results. In the following, we illustrate the proposed HEaD
approach at inference time to streamline the generation process and, as a result, enable automatic
quality assessment of the final output.

Cross-Attention Maps and PFI Extraction. Let us consider a prompt y containing a set of
target objects O to be generated in the image. The process of extracting these target objects from
the prompt can be formalized as:

O = TOE(y), (11)
where TOE(·) represents a Target Object Extraction function. Here, the term “objects” refers
to words in the prompt directly associated with discernible elements in the image, for which we
will extract the corresponding cross-attention maps. While our current methodology primarily
focuses on objects, it holds the capability for future expansion to include a wider spectrum of
visual concepts (such as attributes or colors), going beyond the limits of object-based extraction.

We then define the critical timestep, denoted as T , as a specific step in the diffusion process
where cross-attention maps for each object (AO,T ) and the Predicted Final Image (PFIT ) are
extracted. These elements are then used as inputs for our Hallucination Prediction network.

In particular, for each object o ∈ O, the cross-attention map Ao,T is obtained by applying
the function a(·), as defined in Eq. ??. PFIT , instead, represents the prediction of the expected
outcome at the end of the generation process, using only information available at timestep T . In
particular, the scheduler projects the latents at T to the final step, and the decoder translates
these predicted latents into the image space. Formally, this process can be defined as follows:

ϵT = ϵθ(zT , T )
zT0 = ∆(zT , ϵT , T , 0)

PFIT = D(zT0 )

(12)

where ϵT represents the predictive noise obtained from the UNet model at critical timestep T .
The function ∆ updates the latents zT to the predicted latents at the final timestep, denoted as
zT0 . Finally, the decoder D translates these predicted final latents into the Predicted Final Image,
PFIT .

As an additional input for the model, we extract an embedding vector for each object. This
vector is produced using CLIP [39] from the text of the requested objects extracted from the
prompt y. Specifically, for each object, we have vo = CLIPText(yo) obtained by applying the CLIP
model to the textual representation yo of each object.

PFIT , the attention maps AO,T and the textual embeddings enable the HP network to metic-
ulously assess and predict the presence of specified objects in the final generated image, ensuring
a coherent and accurate output aligned with the initial textual guidance.

3.4.1.1 Hallucination Prediction Network. During the evaluation phase, the Hallucination
Prediction network process a single object o at a time, taking as input its cross-attention map AO,T ,
the textual embedding vector of the object vo and the predicted final image, PFIT . The network
then outputs a binary prediction indicating the presence or absence of that target object in the
final image. Formally, the process can be written as

Ho = HP(Ao,PFIT , vo), (13)
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Figure 15. Overview of the hallucination detection process and detail of the HEaD network. The process starts
with extracting subjects from the prompt using the TOE model. At timestep T of the diffusion process,
cross-attention maps and PFI are produced. HEaD network processes all inputs using specific feature extractors,
and combines them using a Transformer-based decoder to predict whether generation should continue or not.

where Ho is the binary prediction for object o. An image is considered complete if ∀o ∈ O,Ho = 1,
otherwise, at inference time, the process must restart.

The HP architecture consists of a Transformer model with cross-attention layers that integrates
the two input streams (PFIT , Ao,T ) through self-attention and cross-attention mechanisms. Ini-
tially, all streams are elaborated separately. The PFI is subjected to processing via the visual CLIP
backbone with the extraction of features from the last attention layer. This is followed by the con-
catenation of the textual token vo to this sequence. Simultaneously, a three-layer convolutional
network, processes the cross-attention map.

Following these operations, both outputs are adjusted to the embedding dimension of the
transformer model, predetermined at 192, by employing 1D convolution. This stage precedes the
implementation of a self-attention mechanism on the stream originating from CLIP, followed by a
cross-attention layer that combines the CLIP features (acting as the query) with the ones obtained
from the Cross-Attention maps (serving as keys and values). Skip connections are added following
the classical architecture of the Transformer decoder [101]. This attention block is consistently
applied 12 times, concluding with a classification head that takes as input the activation corre-
sponding to the first element of the input sequence, i.e. vo. The model architecture is shown in
Fig. 15

Throughout the training phase, the visual and textual backbones of CLIP are kept frozen.
This approach guarantees substantial generalization capabilities towards objects not encompassed
within the training dataset, thereby accommodating applications in diverse and unpredictable
environments.

The reliability of the HP network is critical to prevent unnecessary terminations of the genera-
tion and ensures that objects that would have been present are not prematurely discarded.

3.4.2 Experiments and Results

To compare the generation quality, we followed the evaluation protocol introduced in [1]. Specifi-
cally, in this benchmark, the text-to-image model is prompted to generate 5 subjects (i.e. A,B,C,D,E)
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COCO

Method MG2 MG3 MG4 MG5

SD 1.4[85] 90.721.33 50.740.89 11.680.45 0.880.21
SD 1.4[85] + HEaD 95.440.67 65.031.76 19.531.73 1.780.24

Composable Diffusion [102] 63.330.59 21.871.01 3.250.45 0.230.18
Layout Guidance [103] 93.220.69 60.151.58 19.490.88 2.270.44
Structured Diffusion [94] 90.401.06 48.641.32 10.710.92 0.680.25
Attend-and-Excite [92] 93.640.76 65.101.24 28.010.90 6.010.61
TokenCompose [1] 98.080.40 76.161.04 28.810.95 3.280.48
TokenCompose [1] + HEaD 97.610.40 81.271.40 35.331.97 4.930.57

Table 7. SOTA comparison on the evaluation protocol introduced in [1]. Results without HEaD are taken from
Wang et al.[1].

with the caption A photo of A, B, C, D, and E. Subsequently, an open-vocabulary object detec-
tor [104] is asked to detect the presence of the subjects in the generated images. In Table 7, we
report the performance of HEaD and competitors following the COCO subset prompts. This split
includes 80 objects extracted from COCO [105] combined as previously defined, building 1000 dif-
ferent prompts. Considering the capability of each model to potentially introduce hallucinations,
the generated images may feature between one to five subjects. The metric MG-N is utilized to
quantitatively ascertain the count of generated images that accurately portray a minimum of N
subjects as requested in the initial prompt. Results are reported with mean and standard deviation
over 10 seeds following the original implementation.

To promote a fair comparison, we impose a limitation on the maximum number of restarts for
HEaD, specifically setting this limit to 5 iterations. This constraint is designed to standardize the
inference time, facilitating a direct comparison with alternative methodologies. In instances where
a correct image (i.e., an image encapsulating all designated objects) fails to materialize within
these iterations, the seed with the highest number of objects predicted by HEaD is chosen for the
generation. Additionally, the critical timestep T is set to 25. The defined HEaD methodology
proves beneficial in enhancing the overall quality of the output.

As illustrated in Table 7, the implementation of HEaD enhances the detection of object presence
in comparison to SD1.4 [85]. Specifically, an average increase of 14.29% in the detection of three
objects is observed when HEaD is integrated with SD1.4 compared to the raw SD. Additionally,
improvements of 7.85% and 0.9% are noted for MG4 and MG5, respectively. When compared
to Composable Diffusion [102], Layout Guidance [103], and Structured Diffusion [94]. HEaD with
SD1.4 surpasses them in nearly all the MG categories. Specifically, for MG3 metric, SD1.4 equipped
with HEaD obtains a gain of 43.16%, 4.8%, and 16.39% for respectively Composable, Layout
Guidance, and Structured Diffusion.

Significantly, HEaD was initially trained using the model SD2, which demonstrates the capa-
bility of the model to adapt to various diffusion models beyond the one it was originally trained
on. This adaptability feature is further corroborated by the performance enhancements achieved
when HEaD is utilized in conjunction with TokenCompose [1]. In this scenario HEaD obtains an
increase of 5.11%, 6.52%, and 1.65% in MG3, MG4, and MG5 when compared to TokenCompose,
providing state-of-the-art performance in MG3 and MG4. While Attend-and-Excite [92] records
the best results for MG5, TokenCompose equipped with HEaD obtains comparable results.
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Figure 16. Overview of PEAR. (1) Given the initial state s(0) of the user and weights w(0), PEAR computes a pool
of candidate interventions achieving recourse. (2) A choice set O(t) is selected from the pool and presented to the
user. (3) The user picks their preferred intervention from the set. (4) An improved estimate of the weights w(t+1)

is computed using this feedback, and (5) the user’s state s(t+1) is updated. After T rounds, the estimated weights
are used to compute a final intervention I∗.

3.4.3 Conclusion

In this work, we have proposed HEaD, a state-of-the-art methodology designed to significantly
improve the efficiency and accuracy of image generation processes using Diffusion Models. The
key to our innovation lies in the integrated use of cross-attention maps, Predicted Final Image,
and textual data to predict the outcome of the image generation process. HEaD has been shown
to improve the generation fidelity of the requested objects inside the final image. One of the key
messages we wish to convey through our work is that HEaD can be effectively applied ”as is” to
other diffusion models to ensure the presence of targeted objects in the final image. The internal
operations of the diffusion model are not affected by the functionality of HEaD. Furthermore, we
created InsideGen, a dataset that we plan to make available to the research community. This
resource will facilitate further investigation into how the internal generation data can be leveraged
to refine the image generation process as a whole. The HEaD approach could be further expanded
not only evaluating the presence/absence of objects but also the relationships of the objects or the
aesthetic aspects of the objects themselves.

3.5 Personalized Algorithmic Recourse
Contributing partners: FBK, UNITN

3.5.1 Introduction and Methodology

Automated decision support systems are increasingly employed in high-risk decision tasks to em-
power human decision-makers and improve the quality of their decisions. Example applications
include bail requests [106], loan approvals [107], job applications [108], and prescription of med-
ications and treatments [109]. Despite their promise, often these systems are opaque – meaning
that users, and even engineers, have trouble understanding and controlling their decision process
– and provide no means for overturning unwanted outcomes, such as denied loan requests. One
way of addressing these issues is through the lens of Algorithmic Recourse (AR) [110, 111]. In AR,
given an undesirable machine-generated decision, the goal is to identify a sequence of actions – or
interventions for short – that once implemented by the user overturns said decision, for instance,
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changing job or obtaining a master’s degree. Motivated by this, a number of approaches have been
recently proposed for computing AR [112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123].

It is critical that the suggested recourse plans are not too difficult or expensive to carry out.
This entails that recourse should be personalized, because different users in the same situation may
need substantially different recourse plans. To see this, consider a user who is denied a loan. Based
on a profile made by the financial institution, an AR algorithm might suggest the user reduce their
monthly expenses. However, unlike the “average” customer, our user is incurring high medical
expenses because they recently contracted an invalidating illness. Thus, the AR suggestion is
highly inappropriate. Clearly, it is impossible to infer such a constraint from their profile alone.
Most approaches, however, completely neglect the user’s own preferences. The few that do require
feedback that is difficult to obtain in practice, e.g.preferences over a large pool of alternatives
[120, 121, 122, 123] or upfront quantification of action costs [124, 114, 125, 122, 126].

We argue that algorithmic recourse should make users first-class citizens in the recourse gen-
eration process rather than viewing them as passive observers. To this end, we introduce PEAR
(Preference Elicitation for Algorithmic Recourse), the first human-in-the-loop approach for gener-
ating personalized recourse tailored for a target end-user. Our algorithm integrates AR and ideas
from interactive Preference Elicitation (PE) [127, 128, 129, 130, 131, 132] in a fully Bayesian setup.
PEAR goes beyond existing approaches in that the costs of actions are estimated from user feedback
and prior information. In each iteration, PEAR identifies a small selection of alternative interven-
tions – a choice set – that optimizes a sound measure of information gain (the Expected Utility of
Selection (EUS) [131, 133]) and then asks the user to pick their preferred option. Using this feed-
back, PEAR quickly improves its estimate of the user’s preferences and generates interventions that
get progressively closer to the user’s ideal. Furthermore, PEAR takes interactions and dependencies
between actions costs into account when computing suggested recourse, whenever this information
is available. See Fig. 16 for an overview.

Contributions. Summarizing, we:

• Introduce the problem of personalized algorithmic recourse, and show that existing approaches
are insufficient to solve it.

• Develop PEAR, the first human-in-the-loop Bayesian approach for computing personalized inter-
ventions that is robust to noise in user feedback and minimizes user effort.

• Evaluate PEAR on synthetic and real-world datasets and show that it can generate substantially
– up to 50% – cheaper interventions than user-agnostic competitors after only a handful of
queries.

Problem Statement. The user state s = (s1, . . . , sd) ∈ S ⊆ Rd is a vector of d categorical
and real-valued features encoding, e.g.instruction level and income. An action a ∈ A is a map
that takes a state s and changes a single feature, yielding a new state s′ = a(s), and expresses a
recommendation of the form “Increase your income by $100”. Given a (black-box) binary classifier5

h : S → {0, 1} and a user state s leading to an undesirable decision y = h(s), AR computes
an intervention – i.e.an ordered set of actions I = {a(1), . . . , a(|I|)} – that can be applied to s
to obtain a counterfactual state s′ associated to a more desirable outcome h(s′) ̸= y, all while
minimizing user effort. We formalize the user effort required to perform an action via a cost
function C : A × S → R+. The cost of an intervention is the sum of the costs of all actions it
contains, that is C(I) =

∑|I|
i=0 C(a(i), s(i)). Here, s(i) is the state obtained by applying action

5It is straightforward to adapt our approach to deal with multiclass classification problems.
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a(i−1) to state s(i−1), and s(0) = s is the initial state. We denote with I(s(0)) the operation of
applying each action a ∈ I sequentially.

Approaches to AR assume the user effort is proportional to the number of actions that need to
be carried out, and minimize it by searching for short interventions I. However, this is unrealistic
and impractical. For instance, changing job into a highly skilled one may not be realistic without
obtaining a Master’s degree first. In reality, the user effort also depends on users’ preferences
w ∈ W ⊆ Rd which we represent as d-dimensional vectors. For example, for some people, it
might be easier to improve their education than get new employment. Thus, we parameterize the
cost function using the user preferences as C(I | w), or C(a, s | w) if we refer to single actions.
In the following, we distinguish between the (typically unknown) user preferences wGT and the
preferences w used by the recourse algorithm, which might differ from the former. Motivated by
this, we introduce a new problem setting, denoted personalized algorithmic recourse:

Definition 1 (Personalized Algorithmic Recourse,) Given a black-box binary classifier h and
a user state s, acquire a cost function C(I | w) for interventions such that the intervention I∗

obtained by solving the following optimization problem:

I∗ ∈ argminI C(I | w) s.t. h(I(s(0))) ̸= h(s(0)) (14)

has minimal regret for the target user, defined as:

Reg(I∗, IGT) = C(I∗ | wGT)− C(IGT | wGT)

where wGT ∈ W encodes the ground-truth but unobservable preferences of the user and IGT is the
“ideal” intervention that would be obtained by solving Eq. (14) using wGT.

The similarity of Eq. (14) to existing formulations of AR can be misleading, as here the key
challenge is that of obtaining weights w that reflect the user’s own preferences.

3.5.2 The PEAR Algorithm

In order to account for uncertainty over the user’s weights w, PEAR explicitly models a distribution
P (w) over them and progressively refines it by interacting with a target user. A high-level overview
of PEAR is given in Fig. 16 and the pseudo-code is listed in Algorithm 1.

In each iteration t = 1, . . . , T , where T is the iteration budget, PEAR computes a choice set
O(t) ∈ Ik containing k candidate interventions achieving recourse (for a small k, e.g.2 to 4) and
asks the user to indicate their most preferred option in the set. Importantly, O(t) is chosen so as
to maximize the (expected) information gained from the user, and in a way that is robust to noise
in their feedback. We detail the exact procedure used by PEAR in Section 3.5.2. These user choices
are stored in an initially empty dataset D(t). In each step, PEAR integrates the user’s feedback by
inferring a posterior over the weights P (w | D(t)) ∝ P (D(t) | w)P (w) using Bayesian inference,
and updates the user state by applying the first action Î1 of the chosen intervention. We apply a
single action so as to elicit user preferences in all intermediate states. If a state achieving recourse
is reached, the user state is reinitialized. After T rounds,6 PEAR computes a low-cost personalized
intervention by applying the intervention generation procedure described in Section 3.5.2, biased
according to the latest posterior p(w | D(t)).

PEAR makes no assumption on the form of the prior P (w), meaning that the prior can be
adjusted based on the application. In order to model both variances across the preferences of indi-
viduals and for sub-groups in the population, in this work we model them as a mixture of Gaussians

6In practice, the loop can be terminated as soon as the user is satisfied with one of the interventions in O(t).
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Algorithm 1 The PEAR algorithm: h : S → {0, 1} is a classifier, s(0) ∈ S the initial state, A the
available actions, p(w) the prior, T ≥ 1 the query budget, k ≥ 2 is the size of choice sets.

1: procedure PEAR(h, s(0),A, T, k)
2: Initialize t← 0, D(0) ← ∅
3: for t = 1, . . . , T do
4: O(t) ← SUBMOD-CHOICE(h, s(t−1),A, k,D(t−1)) ▷ Algorithm 2
5: Ask the user to pick the best intervention Î ∈ O(t)

6: D(t) ← D(t−1) ∪ {Î}
7: Update weight estimate p(w | D(t))
8: s(t) ← Î1(s

(t−1))
9: if h(s(t)) ̸= h(s(0)) then

10: s(t) ← s(0)

11: I∗ = W-FARE(h, s(0),w∗) with w∗ = EP (w|D(T ))[w] ▷ Section 3.5.2
12: return I∗

with M components Ni(µi, �i), for i = 1, . . . ,M . This choice works well in our experiments, see
Section 3.5.3. Note that, analogously to [125], it is also possible to fit the prior on population-level
preference data or domain expert input, whenever this is available. In our experiments, we do this
for all competitors.

Generating Personalized Interventions with W-FARE. PEAR generates personalized interven-
tions by leveraging a novel, user-aware extension of FARE [112], a state-of-the-art algorithm for
generating short – but user-agnostic – interventions, which we briefly outline next. In FARE, each
action a ∈ A is implemented as a tuple (f, x), where f is a function changing one feature and x
is the value that feature takes, e.g.(change_income, $1000). Given an initial state s, FARE uses
reinforcement learning to learn two probabilistic policies πf (s) and πx(s), which are used as priors
to guide a Monte Carlo Tree Search procedure that incrementally builds an intervention I by se-
lecting actions a(i) ∈ A. In order to ensure interventions are actionable, actions a are only chosen if
they satisfy given preconditions. The reward used by FARE is r(I) = ρ|I| · 1

{
h(I(s(0))) ̸= h(s(0))

}
,

where ρ > 0 is a discount factor and the indicator evaluates to 1 if I attains recourse and to 0
otherwise. FARE is highly scalable and very effective at identifying counterfactual interventions
even under minimal training budget [112].

FARE is user-agnostic, while PEAR needs to generate personalized interventions. We fill this gap
by introducing W-FARE, a novel extension of FARE that integrates the user’s costs into the reward
while inheriting all benefits of the latter. Recall that PEAR maintains a posterior over the weights.
The expected cost of an action can thus be obtained by marginalizing over the posterior:

E[C(a, s) | D(t)] =
∫
w
C(a, s | w)P (w | D(t)) dw

Analogously, the cost of an intervention I is replaced by the expectation:

E[C(I) | D(t)] =
∑|I|

i=0 E[C(a(i), s(i)) | D(t)]

The W-FARE reward function is then given by r(I | w) ∝ ρE[C(I|D(t))] ·1
{
h(I(s(0))) ̸= h(s(0))

}
. This

explicitly drives RL to learn policies that optimize user-specific action costs and that, therefore,
help MCTS to more quickly converge to personalized interventions. We show empirically that PEAR
is substantially more effective than FARE at computing personalized interventions in Section 3.5.3.
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Computing Informative Choice Sets. Given the current posterior P (w | D(t)), PEAR com-
putes a choice set containing k interventions I that maximizes information gain [127]. We measure
the latter using the Expected Utility of Selection (EUS) [133], a measure of the goodness of a
set defined as the expectation, under the uncertainty over w, of the utility of its most preferred
element. EUS is closely related to the Expected Value of Information (EVOI), and frequently
used in Bayesian PE [134, 131, 135, 133]. The EUS builds on the notion of expected utility of an
intervention I, which is defined as:

EU(I | D(t)) = E[−C(I) | D(t)] = −
∫
w
C(I | w)P (w | D(t)) dw

The EUS of a choice set O can then be defined as:

EUSR(O | D(t)) =
∑

I∈O PR(O ⇝ I)EU(I | D(t))

= −
∫
w

[∑
I∈O PR(O ⇝ I | w)C(I | w)

]
P (w | D(t)) dw (15)

Here, PR(O ⇝ I | w) is the probability that a user with weights w picks I from O, under a specific
choice of response model R modelling noise in user choices. Intuitively, we expect users to prefer
the cheapest interventions I ∈ O. Moreover, we also expect that interventions in O with similar
costs have a similar probability of being chosen. Motivated by this, and following common practice
in choice modelling [136], in PEAR we implement a logistic response model (L), defined as:

PL(O ⇝ I | w) =
exp(−λC(I | w))∑

I∈O exp(−λC(I | w))

Here, λ ∈ R is a temperature parameter. Finding a choice set O maximizing the EUS is intractable
in general – NP-hard [137, 138], in fact – and computationally intensive in practice, and risks
slowing down the interaction loop to the point of estranging users. We observe that, however,
under some response models R, the EUS becomes submodular and monotonic [131]. This is the
case for the noiseless response model (NL), according to which the user always prefers the lowest-
cost option, i.e.7

PNL(O ⇝ I | w) =
∏

I,I′∈O : I ̸=I′ 1{C(I | w) < C(I ′ | w)}

This means that, for NL, greedy optimization is sufficient to find a choice set O that achieves high
EUSNL with approximation guarantees. Formally, it holds that for choice sets O found via greedy
optimization, EUSNL(O | D) ≥ (1 − e−1)EUSNL(O

∗ | D), where O∗ is the truly optimal choice
set [131, 137, 138]. In PEAR, we leverage the fact that EUSL − EUSNL is always smaller than a
problem independent (tight) bound [131], meaning that instead of minimizing EUSL directly, we
can compute a high-quality choice set by greedily maximizing EUSNL. This immediately leads to
a practical algorithm for the logistic response model L, listed in Algorithm 2.

3.5.3 Experiments and Results

Our experimental evaluation is aimed at answering the following research questions:

Q1 Does PEAR succeed in minimizing regret for an increasing amount of user feedback?

Q2 Does PEAR outperform competitors in terms of validity and cost?

Q3 Is PEAR robust to imprecise knowledge of the cost correlation structure of the user?
7For the sake of presentation, we assume that there are no ties. Note that the EUS formula is invariant to the

way ties are broken. In our implementation, ties are broken uniformly at random.
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Algorithm 2 Greedy procedure to efficiently compute a choice set O: s(t) ∈ S the current state,
A the available actions, k ≥ 2 is the size of choice sets, D(t) the user choices so far.

1: procedure SUBMOD-CHOICE(s(t), k,A,D(t))
2: O ← ∅
3: w̄ ← Ep(w|D(t))[w]
4: while |O| < k do
5: Generate the candidate interventions I with W-FARE using A and w̄
6: Î ← argmaxÎ EUSNL(O ∪ Î | D(t))− EUSNL(O | D(t))

7: O ← O ∪ {Î}
8: return O

Datasets and Classifiers. We evaluated our approach on two real-world datasets taken from
the relevant literature: GiveMeSomeCredit [139] and Adult [140]. They are (unbalanced) binary
classification problems for income prediction and loan assignment, respectively. The datasets have
both categorical and numerical features. Some of these features are actionable (e.g., occupation,
education), while others are immutable (e.g., age, sex, native_country). These datasets come
without a causal graph and users’ preferences over the features. Following previous work [111,
112, 113], we manually defined and fixed the cost correlation structures for both. We randomly
generated user-specific weights for each instance by sampling from a (dataset-specific) mixture of
Gaussians with M = 6 components and uniform mixture weights. We then split the data into
training (70%), validation (10%) and test (20%) sets. For each dataset, we designed the black-
box classifier h as an MLP with two hidden layers. We trained it by cross-entropy minimization,
selecting the hyperparameters which maximise the F1 score on the validation set.

“Easy” vs. “Hard” Users. Intuitively, users close to the decision boundary of the black-box
h will require few actions to achieve recourse, while users to whom h assigns a low score might
need longer and more complex interventions. Understanding the preferences of these “hard” users
is crucial since a wrong suggestion might substantially increase the overall cost for them. For each
dataset, we thus built two separate testing sets. The first one, named All, is obtained by sampling
300 users s with an unfavourable classification (h(s) < 0.5), regardless of the actual value of h.
The second one, named Hard, is obtained by sampling 300 users with an unfavourable classification
having a score in the lower quartile of the black-box score distribution.

Competitors. We compare PEAR against several baselines: FARE and its explainable version
EFARE [112], CSCF [113], an evolutionary algorithm which, similarly to FARE, generates recourse
options by considering consequence-aware cost functions and action sets A, and FACE [141], a well-
know AR algorithm, which optimizes for population-based ”feasible paths” to achieve recourse.
We also consider two simpler baselines, a brute-force search (MCTS) and a vanilla reinforcement
learning agent (RL), trained in a similar way as in [142, 143]. Note that all the competitors are
model-agnostic and not interactive, since they assume the users’ costs to be fixed.

Experimental Protocol. For PEAR, we vary the number of questions T to the user from 0 to 10.
For T = 0, we initialize the weights with the expected value of the prior, EP (w)[w], that represents
a user-independent population-based prior. Moreover, we employ two user response models, the
noiseless model (Section 3.5.2), to check the effectiveness of our approach in the best-case scenario
where the user can perfectly express their preferences, and the logistic model (Section 3.5.2), to
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Figure 17. Normalized Average Regret for PEAR when varying the number of questions, the choice set size and the
user response model on both datasets (sampled from All users).

challenge our approach in a more realistic scenario. To provide a fair comparison, we equip the
competitors with our cost function and set their weights to the expected value of the prior.

Q1: PEAR Successfully Minimizes the Regret. Fig. 17 shows the evaluation of the regret as
a function of the number of queries to the user. Here the ground-truth intervention IGT (which
is unknown) is approximated by running PEAR with the correct user costs wGT , and the regret is
normalized by rescaling the costs between C(IGT | wGT ) and C(I(0) | wGT ) where we generate I(0)
using the expectation of the prior. We run PEAR with two different choice set dimensions, k = 2
and k = 4, and for both noiseless and logistic response models. After a few questions, PEAR reaches
a low regret in all settings. Generally, a larger choice set produces a lower regret, irrespective of
the response model, with the downside of increasing the cognitive burden for the user. We now
briefly summarize the results when T = 10. For the Adult dataset, the best regret is ≈ 0.09
for the noiseless user and k = 4, while the worst regret is ≈ 0.40 for the logistic response model
and k = 2. For GiveMeSomeCredit, we get ≈ 0.15 (noiseless, k = 4) and ≈ 0.45 (logistic, k = 2).
Overall, we can provide interventions which are at least 50% cheaper than their preference-agnostic
counterparts.

Q2: PEAR Outperforms Competitors in terms of Validity and Cost. Following the AR
literature [114, 144], we compare PEAR (with T = 10) and all competitors in terms of average validity,
i.e.fraction of users for which we obtained recourse, intervention cost and length (or sparsity), i.e.the
number of features that have to be changed. Intervention costs are computed by using the true
weights wGT . Table 8 shows the results. PEAR manages to achieve the highest validity while also
providing substantially cheaper interventions than the non-personalized competitors on average.
This is true both for the noiseless and logistic response models. While CSCF tends to produce
shorter interventions, these are in general more costly and have a larger cost variance with respect
to those found by PEAR, confirming the intuition that length is a suboptimal proxy of intervention
complexity. The only exception is the Hard setting of GiveMeSomeCredit, where however CSCF
manages to achieve recourse for only 22% of the users, whereas PEAR achieves recourse in 58%
of the cases. The difficulty of CSCF in achieving recourse is visible in all settings and severely
limits its applicability. Furthermore, CSCF is 10 to 50 times more computationally expensive
than PEAR, making it unsuitable for real-time interactive scenarios. The MCTS baseline has rather
poor performance both in terms of validity and cost in all settings, while the lbaseline has a
reasonably high validity on Adult but it completely fails to learn a policy achieving recourse on
GiveMeSomeCredit. On the other hand, methods which combine MCTS and l(FARE and EFARE)
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Adult GiveMeSomeCreditUsers Method
Validity Cost Length Validity Cost Length

FARE 0.90± 0.27 285.63± 195.68 3.45± 1.19 0.86± 0.23 161.77± 107.42 3.27± 1.13

CSCF 0.78± 0.28 154.28± 125.34 2.53± 0.57 0.57± 0.42 100.69± 120.22 2.51± 1.12

EFARE 0.76± 0.39 306.11± 199.02 3.54± 1.25 0.67± 0.38 155.92± 109.19 3.18± 1.18

RL 0.76± 0.38 283.31± 167.86 3.36± 1.08 0.12± 0.32 59.66± 0.00 2.00± 0.00

MCTS 0.44± 0.44 445.65± 201.28 4.60± 1.19 0.70± 0.42 214.33± 119.38 4.09± 1.31

FACE 0.15± 0.27 397.49± 128.43 3.76± 0.64 0.24± 0.38 327.18± 78.85 5.97± 0.62

PEARNL (ours) 1.00± 0.03 142.23± 61.75 2.84± 0.59 0.89± 0.00 96.04± 31.96 2.79± 0.42

All

PEARL (ours) 1.00± 0.04 146.54± 63.09 2.84± 0.56 0.89± 0.00 100.19± 29.53 2.85± 0.48

FARE 0.71± 0.44 438.97± 188.50 4.54± 1.21 0.47± 0.37 319.46± 96.36 4.97± 0.70

EFARE 0.55± 0.48 454.05± 202.76 4.52± 1.25 0.22± 0.36 371.58± 82.18 5.31± 0.71

RL 0.55± 0.47 433.64± 152.67 4.33± 1.24 - - -
CSCF 0.25± 0.36 382.84± 126.31 3.70± 0.56 0.13± 0.32 190.81± 119.99 3.36± 1.11

MCTS 0.21± 0.40 599.20± 153.44 5.53± 0.72 0.40± 0.43 353.75± 99.26 5.43± 0.88

FACE 0.00± 0.04 448.72± 0.00 5.20± 0.00 0.20± 0.36 455.20± 92.10 7.09± 0.53

PEARNL (ours) 0.99± 0.08 296.37± 43.84 3.35± 0.55 0.58± 0.04 251.60± 51.16 4.59± 0.40

Hard

PEARL (ours) 0.99± 0.09 301.13± 52.61 3.34± 0.58 0.58± 0.02 262.23± 45.36 4.64± 0.36

Table 8. Performance of all competitors averaged over 10 runs. A ‘-’ indicates that the method did not find any
successful intervention for any user. PEARNL and PEARL indicate PEAR associated with the noiseless and logistic
response model, respectively. The best results are boldfaced.

give better performance, which is aligned with previous results [112], but are still suboptimal with
respect to PEAR in terms of both validity and cost. Finally, FACE struggles to achieve recourse since
it needs to find a ”feasible path” from the current user to a similar one in the training set, which
is favourably classified.

Q3: PEAR is Robust to Misspecifications of the cost Correlation Structure. In the previ-
ous experiments, following other research works [111, 112, 113], we assumed to know the structure
of the CCS a-priori. However, in a real scenario, we might have instead an approximate causal
graph from which to derive the CCS. Table 9 shows the validity, cost and length of the interven-
tions found by removing X% of edges from the causal graph, with X ∈ {0.15, 0.25, 0.50, 1.00}.
Validity is almost unaffected by corruption in all settings since it only impacts the computation of
the cost. On the other hand, as expected, increasing the amount of graph corruption reduces the
effectiveness of user feedback. However, the degradation is not dramatic. Indeed, if we look at the
Hard evaluation, the increase in cost is negligible (around 4%) with up to 50% randomly removed
edges. On GiveMeSomeCredit, we do not see any significant increase in costs. Surprisingly, we see
instead an improvement for 15% and 25% corruption levels. We hypothesize that lacking causal
knowledge about features which are not needed for recourse can be beneficial since it simplifies
the elicitation process. However, at higher levels of corruption, this effect disappears. The setting
X = 1.0 is equivalent to a non-causal cost function, in which acting on a feature has always the
same cost, irrespective of the others. It is the common choice of many works dealing with AR
[145, 115, 141]. Under such a setting, when considering All users, the degradation is more evident,
but still within 6% for GiveMeSomeCredit, while for Adult it goes up to 15%. Overall, results
clearly indicate that PEAR can suggest reasonable cost interventions even with a largely misspecified
cost correlation structure. This is apparent when comparing these results with those in Table 8.
Even with 50% randomly removed edges, PEAR recommends interventions that are cheaper than

43



Adult GiveMeSomeCreditUsers Corruption
Validity Cost Length Validity Cost Length

None 1.00± 0.04 146.54± 63.09 2.84± 0.56 0.89± 0.00 100.19± 29.53 2.85± 0.48

0.15 1.00± 0.00 165.11± 46.19 2.79± 0.24 0.90± 0.00 98.02± 18.37 2.46± 0.16

0.25 1.00± 0.00 162.05± 48.05 2.89± 0.34 0.90± 0.07 99.51± 18.53 2.48± 0.18

0.5 1.00± 0.00 175.54± 62.29 2.82± 0.36 0.90± 0.11 110.35± 19.93 2.56± 0.20

All

1.0 0.99± 0.02 172.51± 61.13 2.96± 0.40 0.91± 0.04 106.63± 28.84 2.64± 0.28

None 0.99± 0.09 301.13± 52.61 3.34± 0.58 0.58± 0.02 262.23± 45.36 4.64± 0.36

0.15 1.00± 0.00 308.22± 38.40 3.47± 0.26 0.63± 0.04 237.00± 35.72 4.06± 0.31

0.25 1.00± 0.02 305.62± 39.73 3.32± 0.35 0.66± 0.11 238.92± 28.66 3.90± 0.27

0.5 1.00± 0.03 314.36± 37.93 3.38± 0.32 0.59± 0.14 250.47± 29.71 4.16± 0.24

Hard

1.0 0.99± 0.03 313.51± 61.64 3.69± 0.44 0.64± 0.09 256.24± 12.04 4.24± 0.18

Table 9. Evaluation of PEAR (with q = 10 and a logistic noise model) for an increasing amount of CCS graph
corruption, averaged over 10 runs. ”None” indicates that the correct causal graph is being used.

all competitors but CSCF, that however has a substantially lower validity.

3.5.4 Conclusion

In this work, we identify the problem of personalized algorithmic recourse as a fundamental step-
ping stone for ensuring recourse is usable in real-world applications, and develop PEAR, the first
algorithm able to provide personalized interventions. Our experimental evaluation shows that
PEAR substantially outperforms existing (non-personalized) solutions in terms of both validity and
intervention cost with only a handful of queries to the user. We hope that this initial contribution
can foster further research in the community to work towards a more realistic form of algorithmic
recourse that can be successfully deployed in real-world scenarios. As for all methods dealing with
algorithmic recourse, the effectiveness of the approach should, in principle, be evaluated on real
users. However, this evaluation is highly non-trivial (and thus still missing in the algorithmic
recourse literature) because it requires the creation of a realistic scenario where a user feels to be
unfairly treated in some machine-driven decision involving their life. The legal requirements that
are progressively being introduced to regulate AI systems [146] could contribute to making the
information needed to set up such a scenario available in the near future.

3.5.5 Relevant Publications

• [147] G. D. Toni, P. Viappiani, S. Teso, B. Lepri, and A. Passerini, “Personalized algorithmic
recourse with preference elicitation,” Transactions on Machine Learning Research, 2024, ht
tps://openreview.net/forum?id=8sg2I9zXgO

• [148] S. Esfahani, G. De Toni, B. Lepri, A. Passerini, K. Tentori, and M. Zancanaro, “Prefer-
ence elicitation in interactive and user-centered algorithmic recourse: an initial exploration,”
in Proceedings of the 32nd ACM Conference on User Modeling, Adaptation and Personaliza-
tion, 2024, https://dl.acm.org/doi/pdf/10.1145/3627043.3659556

3.5.6 Relevant Software and/or External Resources

• https://github.com/unitn-sml/pear-personalized-algorithmic-recourse
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3.6 Quantifying Fairness with Fuzzy Logic
Contributing partners: CERTH

3.6.1 Introduction and Methodology

Quantifying bias and fairness concerns for AI systems with the goal of creating fairer ones is an
emerging subject of many research papers [149, 53, 150] and algorithmic frameworks [151] like
AIF360 [152] and FairLearn [153]. However, measures that perform such quantification tend to
employ ad-hoc definitions of what is “fair” without clarifying which policymaker and stakeholder
opinions they reflect. Involving the opinions of people outside the research circles creates socially
responsible AI [154] by enabling participatory design and democratic deliberation [155]. Conversely,
without explicit acknowledgement of which concerns are quantified by measures, it is unclear
how to port them in real-world contexts different than those they were originally conceived for.
Furthermore, multiple measures may be mathematically or conceptually incompatible with each
other [156], and only those suited to the context should be selected.

To address the issue of making algorithmic fairness research outcomes practically useful, we look
at a framework [157] that disentangles formal definitions of fairness from context-specific choices
(e.g., that determine hyperparameter values) and investigate how it can be adopted by real people
to create definitions of bias or fairness. This framework uses fuzzy logic [158], which is broader
than classical logic, being thus able to reflect uncertain opinions. The framework consists of three
steps: A) Bias or fairness definitions are dictated by policymakers and transcribed to basic fuzzy
logic [159, 160] statements that use abstract predicates and logical connectives (and, or, etc.). B)
Context-specific predicate understanding and truth values are extracted from stakeholder beliefs.
C) basic fuzzy logic evaluation rules [161, 162, 163] yield the corresponding truth value of the
definitions.

Practical adoption of the framework requires a collaboration between actors across multiple
disciplines that bring different types of expertise. Thus, in Subsection 3.6.2, we identify these actors
and create an interdisciplinary process to help them both collaborate and combine policymaker
and stakeholder opinions. In Subsection 3.6.3, we then recognize that one of the key practical
challenges in creating context-specific definitions of fairness lies with the repetition of costly and
time-consuming stakeholder opinion gathering processes. For this reason, we present methods for
simplifying these processes.

3.6.2 Interdisciplinary Collaboration

An interdisciplinarity collaboration is needed for the practically grounded adoption of the fuzzy
logic framework described above. Here, we summarize the involved actors and their collaboration
workflow.

Actors. First, fuzzy logic practitioners or other researchers with the required expertise should ac-
curately express in basic fuzzy logic the context-independent part of fairness definitions that reflect
the intent of policymakers, be they common assumptions or regulation. Note that familiarization
with this kind of logic can be arduous without prior experience and, for this reason, processes
similar to causal model building [164, 165] should be employed. If the end-result of logical analy-
sis is standardized for a broad range of assumptions or legal settings, AI creators can determine
the standardization’s parameters based on domain expertise, and only the step of encoding stake-
holder beliefs remains. Second, social scientists should gather stakeholder feedback with which to
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quantify (obtain the truth value in the specific context) abstract predicates found in basic fuzzy
logic definitions. In addition to gathering and parsing potentially conflicting viewpoints, social
scientists should also be the ones to lead discussions on how predicates being quantified should be
interpreted, and negotiate which criteria belief truth values should be obtained. As quantitative
feedback may be hard to gather from lay people, the burden of a converting qualitative discussions
to a numerical scale may fall on the social scientists gathering it, with accompanying subjectivity
concerns. Questionnaires or other means of extracting stakeholder beliefs may also require inter-
disciplinary design, for example, to account for edge cases both algorithmically (see below) and
socially. Third, computer scientists (e.g., data analysts, machine learning engineers) are needed to
implement the extracted definitions of fairness or bias. These are primarily the AI creators that
should drive the adoption of this work in practice.

Workflow. Fostering a collaboration between the above actors presents its own challenges, rang-
ing from organizational complexity to reconciling different viewpoints (e.g., sociological vs tech-
nical). One prospective scheme that reduces the interactions between disciplines is presented in
Figure 18. In this, logic experts create logical formulas, social scientists determine truth values of
predicates, and computer scientists run the fuzzy logic framework. Importantly, these processes run
independently, which means that the points of contact between different disciplines are minimized.
There is only one feedback loop in which the opinions of stakeholers at large affect the abstract
fairness definitions provided by policymakers. Computer scientists and logic experts could be the
same people. Logic experts and social scientists gather context-independent and context-specific
opinions, respectively encapsulated in abstract fairness definitions and in truth values.

Figure 18. Interdisciplinary collaboration to apply our framework in practice.

3.6.3 Learning to Replicate Stakeholder Beliefs

Given that policymaker opinions see widespread adoption, it remains to quantify context-specific
stakeholder beliefs. This quantification can often be simplified by gathering beliefs under multiple
artificially constructed scenarios, and using these as a reference to extrapolate generic definitions
of fairness. In the following we present theoretical details of the fuzzy logic framework, based on
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which we make recommendations on how it can be used to extract fairness definitions in practice.

Preliminaries. An evaluation mechanism L of basic fuzzy logic is characterized by a t-norm
operation ⋆L that computes the truth value of idempotent logical conjunction (two statements
holding true simultaneously). The t-norm also defines a corresponding residuum operation⇒L that
computes the truth value of logical implication. Different evalutation mechanisms are equivalent
to additional axioms and corresponding logics; three base ones are demonstrated in Table 10,
where the Mostert-Shields theorem [166] states that all other evaluation mechanisms are locally
isomorphic to those.

Logic x ⋆L y x ⇒L y

Gödel min{x, y} x{1 if x ≤ y, y otherwise}
Product x · y {1 if x ≤ y, y

x
otherwise}

Lukasiewicz min{x+ y − 1, 0} min{1, 1− x+ y}

Table 10. Three basic fuzzy logic evaluation mechanisms.

We present a theorem that is used in the rest of our analysis and covers definitions based
on two main predicates: i) group membership, and ii) discrimination. The exact interpretation
of these predicates is left to stakeholders. For example, one interpretation of group membership
would be the chance of encountering protected group members, but could also indicate the chance
of encountering a specific person in case of individual fairness.

Theorem 2 of [157]. Let the predicate imbalance a) be an implication from group membership to
some property, b) be certain for no group members and c) imply discrimination. If bias is imbalance
for group members, then its truth value can be written as:

bias = s ⋆L e ⋆L f(s, e) ≤ s ⋆L e

where s, e are the truth values of group membership and discrimination respectively, and f(s, e) is
a real-valued function for which f(s, e) ≤ fgen(s, e) =

(
e⇒L infs⋆d≥s⋆e d

)
. The inequality is strict

for f(s, e) = fgen(s, e). Fairness can be expressed as mutually exclusive to bias, which has truth
value of fairness = (bias⇒L 0).

Intuitive Interpretation. When obtaining the truth value of bias or fairness from the above
theorem, we argue that group membership will typically be a context-specific numerical constant,
discrimination an (unobserved) function of the AI system and the data it is working with, and
the function f a reflection of additional assumptions that underestimate the degree of bias. For
example, if f(s, e) = fgen(s, e), which is the theoretical worst case for bias, fairness = 0 for all
s, e > 0 in the Gödel and Product logics, additional assumptions are needed to even enable the
prospect of achieving fairness with non-exact discrimination mitigation [167]. The same issue is
not encountered in Lukasiewicz’s logic, though.

We now explore two strategies for defining the truth value e of the discrimination predicate.
The first strategy is common across the algorithmic fairness literature and depends on defining
discrimination as the complement of some notion of indistinguishibility between a group and the
total population, such as fundamental differences in representation or treatment methods. In this
case, stakeholders should be consulted to identify which types of differences matter. The second
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strategy is more participatory and uses machine learning to directly learn to replicate stakeholder
beliefs given an a-priory identification of relevant measurable system quantities.

Discrimination Through Indistinguishibility. To define the discrimination predicate through
further axiomatization, we rely on some base quantitative assessment m ∈ [0, 1] for the group, and
the same assessment m′ ∈ [0, 1] for some other group, such as the total population or the rest of the
population. For example, the groups could correspond to a sensitive attribute’s values, like Male vs
Female in simplistic scenarios, the assessment could be representation, i.e., the fraction of positive
samples, or misclassification rates. We now propose that the assement is the truth value of some
property that should be indistinguishable between the groups. In basic logic terms, this means
that the property holding for one group also implies that it holds for the other and conversely.
We finally take the fuzzy set negation of the result to make the discrimination complementary to
indistinguishibility with following formula:

e = 1− (m⇒Lm
′) ⋆L (m′⇒Lm)

In this equation, we substitute the evaluation mechanisms of some base logics to obtain respec-
tive truth values of discrimination in Table 11. From these, we observe that literature practices
of comparing groups based on differences or ratios correspond to Lukasiewicz and Product logic
respectively. We also obtain a justification of worst-case performance (e.g., worst-case accuracy)
as a type of Gödel logic discrimination. The logic evaluation mechanism may be a direct result of
stakeholder feedback based on how truth values degrade when multiple inexact truths are involved
(e.g., in Lukasiewicz an a large enough number of non-exact statements will eventually yield 0
truth value under indempondent conjunction). Therefore, our analysis maps literature practices
to intuitive terms to help select the mechanism to compute the truth value of discrimination from
common options.

Logic e

Gödel 1− min{m,m′}
Product 1− min{m,m′}

max{m,m′}

Lukasiewicz |m−m′|

Table 11. Truth values of discrimination e under basic fuzzy logic evaluation mechanisms. For m = m′ = 0
Product logic discrimination evaluates to 0.

Learnable Discrimination. A simple methodology for extracting context-specific stakeholder
beliefs would consist of gathering these beliefs through questionnaires. We thus introduce a process
that constructs a broad enough range of synthetic edge cases and then gathers stakeholder opinions
with social science processes, such as questionnaires. Then, consulting similar stakeholders can be
replaced by interpolating between gathered opinions using deep learning. Here we show a full case
study on this practice; this consists of an example fairness definition and a synthetically generated
collection of stakeholder answers and negotiation outcomes.

Preliminary: Fairness Definition
In general, definitions of fairness will not be too complicated, as we want them to be intuitive and
highly interpretable. If there are no other propositions to be modelled, worst-case fairness obtained
for f(s, e) = fgen(s, e) should suffice. We expect more complex forms to arise when there are several
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definitions to be simultaneously assessed, or when there are complex propositions to conjunct. For
the sake of demonstration, let us assume a “business necessity” predicate with truth value b that,
when it occurs for group members, should never imply discrimination, i.e., ((b ⋆L s) ⇒L e) ⇒ 0.
This could be part of affirmative action that hires group members at a higher position, though keep
in mind that introducing too complicated clauses may have unforeseen shortcomings, as happens
in this case below. We add this property (not the predicate) in the definition by conjuncting it to
fgen(s, e) to construct the toy expression:

f(s, e) = fgen(s, e) ⋆L
(
((b ⋆L s)⇒L e)⇒ 0

)
In the following we show what stakeholder feedback would look like, and how it would let us eval-
uate this definition based on context-specific beliefs.

A. Example beliefs
As a first step, we provide example AI system outcomes to stakeholders so that they encounter a
wide breadth of situations across the real-world context in which systems are expected to operate.
For each set of outcomes, we ask them to evaluate discrimination in the range [0, 1]. This corre-
sponds to obtaining the truth value of discrimination in reference cases. Recall that these are not
the truth values of bias, and therefore stakeholders need not worry about reasoning on whether
their observed discrimination is acceptable. A running example on measuring race discrimination
for a hiring process is presented in Figure 19; this is artificially constructed for demonstration
purposes and does not replicate any real-world data or system.

B. Measures
We assume that an axiomatic definition of discrimination is not possible in this setting, for exam-
ple because stakeholders cannot agree on which predictive properties should be compared between
groups. We instead determine which quantitative data properties loosely replicate similar prin-
ciples as the ones that influence beliefs, for example through workshops involving domain bias
experts and stakeholders. In the running example, discrimination is considered to pertain to some
(yet partially unknown) combination of disproportional and unequal representation in hiring re-
sults. These correspond to the measures 1− prule [168] and Calders-Verwer disparity cv [169].

C. Replicate beliefs
We now create a mechanism that replicates the truth values of discrimination. In the simplest case,
this could be an existing measure found in the literature, or a machine learning model trained on
the gathered truth values of discrimination. However, more complicated mechanisms that com-
bine the quantities pinpointed in the previous step could be created. In the running example, the
measures are combined through a two-layer perceptron neural network with 64 hidden layers, and
trained with gradient descent with 10−3 learning rate on the five examples until numerical tolerance
10−6. There will likely be small deviations from the reference truth values of discrimination on
validation data (for simplicity, in the running example training data are also used for validation).
It is important to again involve stakeholders and policymakers in determining which deviations are
acceptable, as shown in the last column of the running example. We could, this or the previous
step if some deviations were not acceptable, for example, to retrain the two-layer neural network to
greater precision, or to rework which quantities it should learn from. The end-result of the above
process is a measure of discrimination (or a model approximating such a measure) that mirrors the
belief systems of stakeholders.

D. Determine remaining choices
We finally need to decide on what the group membership predicate S entails and its corresponding
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Figure 19. Synethetic example of fitting survey-derived discrimination for truth value of discrimination
P (discrimination) = e.

truth value, as well as in which subclass of basic fuzzy logic fairness evaluation will take place. In
the specific definition of fairness we tackle in this appendix, we also need to determine the truth
value of the business necessity predicate B. For the first property, we consider a scenario where
interaction with stakeholders led to consider the truth value of encountering one group members
as the statistical chance of encountering a person from the group in the real world. This value
could be the result of negotiation, but could also be obtained through an additional questionnaire.
Let us assume that some hiring policy also set the business necessity predicate to be equal to 10%.
To determine which fuzzy logics we should work with, let us assume that, after further negotiation,
preserving some minimum kernel of truth value even if multiple statements not perfectly true
were encountered was most important for stakeholders. This means that the fairness definition is
evaluated in Gödel logic. For this, fgen(s, e) = 1.

Numerical example
We finally present an example evaluation of our toy fairness definition: for a set of predictions with
prule = 77%, cv = 0%, business necessity 30% and which covers s = 5% of the population. For
these values, our neural network predicts discrimination e = 19%, and therefore

fairness = (19% ⋆G 5% ⋆G 1 ⋆G ((5% ⋆G 10%⇒ 19%)⇒ 0))⇒ 0

= (5% ⋆G ((5%⇒ 19%)⇒ 0))⇒ 0

= 1

After this first evaluation, we get a sense that the business necessity predicate may be highly
contentious in Gödel logic; any value b > 0 yields fairness = 1 for s > 0, e > 0. To avoid
similar pitfalls, we stress that properties of fairness definitions written in basic fuzzy logic should

50



be critically examined. Furthermore, notice how uninformative working with strong negation may
be in Gödel (or Product) logic; although it makes it possible to procure perfectly certain fairness,
in practice, it does so by discounting a wide range of computational nuance. Thus, it may be
preferable to create continuous evaluation by working with bias or its weak negation and only
assess fairness at the very end of algorithmic bias mitigation pipelines.

3.6.4 Conclusion

With the goal of quantifying bias and fairness while remaining socially responsible, we investigated
how to enable practical adoption of a fuzzy logic framework that can account for policymaker
and stakeholder opinions. Our analysis started from an interdisciplinary workflow that makes it
possible to actually follow the framework by delegating certain tasks to respective experts and
organizing their collaboration. We then explored , whose practical viability we demonstrated with
a case study on a toy policy and settings.

3.6.5 Relevant Preprints

• [157] Krasanakis, E., and Papadopoulos, S. (2024). Evaluating AI Group Fairness: a Fuzzy
Logic Perspective. arXiv preprint arXiv:2406.18939. Under review.
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4 T3.3 Cognition-aware hybrid decision-making systems
4.1 Human Cognitive Biases and AI systems
Contributing partners: ALC, FBK

Cognitive biases are systemic patterns of deviation from rationality in decisions made by humans
that have been well documented by scholars in social psychology, cognitive science, and behavioral
economics since the 1970’s [170, 171, 172, 170, 173].

While there is no unified theory of cognitive biases, it is clear that cognitive biases and heuristics
– which often lead to sub-optimal outcomes – are a crucial part of our decision making 8. In fact,
they have been commercially leveraged in multiple sectors such as casinos [174], addictive apps
[175] and marketing [176, 173] to manipulate human behavior. We advocate for a constructive
and positive use of cognitive biases in technology, moving from manipulation to collaboration. We
propose that considering our cognitive biases in AI systems could lead to more efficient human-AI
collaboration.

There has however been limited research on the interaction between between human biases and
AI systems, as recently highlighted by several authors [177, 178, 179, 180]. As a first step, we
propose a taxonomy of human cognitive biases that is tailored to the design of AI systems. We
then identify 20 cognitive biases that are the most relevant for AI systems. We follow this up with
a study on one popular bias – the attractiveness halo effect – and it’s impact in the digital age.

4.1.1 A Taxonomy of Cognitive Biases

There exist multiple taxonomies of cognitive biases across specific to particular domains such as
medical decision making [181, 182], tourism [183], fire evacuation [184] or visualization[185]. Others
classify biases based on their underlying phenomena [186, 187, 188], which could be misleading given
that there is no widely accepted theory of the source of cognitive biases [189].

We propose classifying biases according to five stages in the human decision making cycle as
depicted in Fig.20 - presentation biases, associated with how information or facts are presented to
humans; interpretation biases that arise due to misinterpretations of information; value attribution
biases that emerge when humans assign values to objects or ideas that are not rational or based
on an underlying factual reality; recall biases associated with how we recall facts from our memory
and decision biases that have been documented in the context of human-decision making. Four
exemplary biases in each of these categories along with their relavence for AI systems have been
summarized in Tables 12, 13 and 14. Fig.20 also illustrates the three different ways in which AI
systems may interact with humans - as external entities in the real world that humans interact with,
as active participants working with humans to support decisions or simply as passive observers of
human decisions.

Additionally, Table 15 illustrates how AI could potentially provide support in detecting and
mitigating some of these biases using the confirmation bias as an example.

4.1.2 Cognitive Biases and AI: Research Directions

Given the ubiquity of AI-based systems in our daily lives (from recommender systems to personal
assistants and chatbots) and the pervasiveness of our cognitive biases, there is an opportunity to

8While heuristics typically refer to a simplifying rule used to make a decision and a cognitive bias refers to a
consistent pattern of deviation in behavior, both terms are used interchangeably in our work as they impact human
decisions in a similar way.
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Figure 20. Stages of the human perception, interpretation and decision-making process that are impacted by
cognitive biases. AI systems (represented by an orange undirected graph) could observe our behavior, detect biases
and help us mitigate them.

leverage cognitive biases to build more efficient AI systems. In our work, we propose three potential
directions of research:

1. Human-AI Interaction: Older studies of cognitive biases were primarily conducted in
scenarios where humans interacted with other humans. However, we do not necessarily
perceive interactions with machines in the same way as we do with humans [257]. Thus, it is
important to study if cognitive biases are present in interactions with machines, under which
conditions and with which degree of intensity. Presentation biases from the taxonomy above
are the most interesting to study in this setting.
Beyond verifying their existence in human-AI interaction, these biases could also be used to
design more human-like AI systems, which could potentially make them more trustworthy.

2. Cognitive Biases in AI Algorithms: Given that humans benefit greatly from relying on
decision-making heuristics in certain conditions, it is worth exploring when and how they
should be incorporated into AI systems. This could potentially help AI systems learn more
from smaller, biased datasets. Initial work by Taniguchi et al. [258, 259] has shown that
systems which incorporate the symmetry [260] and mutual exclusion [261] biases can perform
better than state-of-the-art methods when the dataset is small and biased. Further research
is needed in this area on the potential benefits of other cognitive biases and heuristics.

3. Computational Modeling of Cognitive Biases: There is currently work on modeling
biases either in a specific domain, such as decisions made by doctors [262, 263], or for a
specific task [264, 265]. Bayesian modeling has emerged as a promising modeling framework
[178, 266, 179, 267, 268, 269], but it currently cannot model every bias.
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A unifying, task-independent AI-based framework to automatically identify cognitive biases
from observed human behavior could have a profound impact in the design of AI systems. It
could provide insights into unique mitigation strategies and could enable the development of
personalized systems for different individuals.

4.1.3 Relevant Publications

• [270] A. Gulati, M. A. Lozano, B. Lepri, and N. Oliver, “BIASeD: Bringing Irrationality into
Automated System Design”, 2023. https://arxiv.org/abs/2210.01122

4.2 Halo Effect in AI-Driven Beauty Filters
Contributing partners: ALC, FBK

4.2.1 Introduction and Methodology

Building on the work described in Section 4.1, we study the attractiveness halo effect i.e., the
tendecy of people to assign positive attributes such as intelligence to more attractive people, even
when attractiveness is not a valid cue to predict the dependent variable [220, 223, 271]. We focus
on perceptions of intelligence and trustworthiness, given their relevance in human-AI collaboration
and human-to-human interaction.

In this task, we use AI-based beauty filters – a popular family of face filters, easily accessible
on social media – which aim to beautify the face of the person by automatically applying changes
to the skin, the eyes and eyelashes, the nose, the chin, the cheekbones, and the lips. They rely
on computer vision and augmented reality methods and their prevalence, with millions of users
worldwide, profoundly impacts user self-presentation, raising questions about authenticity, self-
esteem [272], mental health [273], diversity [274] and racism [275].

4.2.2 Methodology

To study the impact of beauty filters on the attractiveness halo effect, we selected a gender-balanced
sample of 462 images from the Chicago Faces Database (CFD) [276] and the FACES dataset [277]
that were diverse regarding the age and ethnicity of the faces, while being gender balanced. We
refer to this dataset as the PRI set. We applied a state-of-the-art beauty filter to each of the
images in the PRI set to create a new set of beautified images (POST set) depicting the same
individuals as in the PRI set but in an “attractive” (beautified) condition. We recruited 2, 748
participants from Prolific to rate the images on a 7-point Likert scale on perceived attractiveness
and 6 other attributes, including intelligence and trustworthiness, as summarized in Fig.21. Each
participant evaluated a gender-balanced sample of 10 distinct individuals with an equal number
of images from the PRI and POST sets, but were not told about the beauty filters being applied
to some of the images they saw. This large dataset enables us to study the attractiveness halo
effect on the same individual in two conditions (original and beautified) minimizing the possibility
of factors other than attractiveness impacting the effect; at scale and with diversity in the age,
gender and ethnicity of the stimuli, which significantly expands the studies carried out to date
[278, 279, 280, 281, 282, 283]. Moreover, we shed light on the impact that pervasive beauty filters
have on this cognitive bias.
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Figure 21. Visual depiction of the user study conducted to collect the data.

4.2.3 Main Findings

Beauty filters increase the perceptions of attractiveness. Comparing the attractiveness
ratings of the images before and after the filters were applied revealed statistically significant
differences in perceived attractiveness for the same individual before and after beautification (p <
0.001, Wilcoxon one-sided pairwise rank test, Fig.22a).

(a) Attractiveness (b) Intelligence (c) Trustworthiness

Figure 22. Pairwise comparison of (a) attractiveness (b) intelligence and (c) trustworthiness before (x-axis, PRI )
and after (y-axis, POST ) beautification. The size of the circles is proportional to the number of ratings provided
for each value on a 7-point Likert scale and the color indicates the proportion of males and females for each
rating. Observe in (a) how all images were rated equally or more attractive after beautification and images of
females were rated as more attractive than images of males. Regarding intelligence (b), the images that were rated
as less intelligent after beautification were mainly from females.

Gender and age matter. Ethnicity does not. Both before and after beautification, images
of females and images of young individuals received significantly higher ratings of attractiveness
than images of males or other age groups, respectively (p < 0.001, Kruskal-Wallis). Perceptions
of attractiveness were not significantly different for subjects across ethnic groups before and after
the application of the filters.
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Beauty filters mitigate the attractiveness halo effect. While Figures 22b and 22c show
that some individuals received lower ratings of intelligence and trustworthiness after beautification,
a statistically significant increase in perceptions of intelligence and trustworthiness for the same
individual was found after the filter was applied, supporting the existence of the attractiveness halo
effect (p < 0.001, Wilcoxon one-sided pairwise rank tests). However, the halo effect significantly
weakened after beautification, as reflected by the parameters of the linear models depicted in
Table 16. This result suggests that beauty filters could be used to mitigate the impact of the
attractiveness halo effect.

Beauty filters exacerbate gender stereotypes. To study the interaction of the gender
and age of the raters and the subjects in the images, we built linear models of intelligence and
trustworthiness with attractiveness, the age and gender of the stimuli and the rater, and interactions
between these variables as regressors, considering the raters as random effects. We compared the
estimated marginal means depending on the gender of the rater and the subjects in the images
and identified several gender differences, reflected in Fig.23:

• Images of females received higher scores than males, with the gap expanding after beautifi-
cation. Male raters also gave lower scores of attractiveness than female raters.

• Despite receiving higher attractiveness scores, images of females received lower intelligence
scores than images of males, with the gap again increasing after beautification. Thus, gen-
der played a stronger role in perceptions of intelligence and beauty filters exacerbated this
stereotype.

• Regarding trustworthiness, the images of females in the PRI set were considered to be more
trustworthy by both male (p < 0.001) and female raters (p < 0.001), yet male raters consid-
ered images of males and females to have similar levels of trustworthiness after beautification.
Thus, perceptions of male raters seem to be more strongly impacted by the beauty filters.

4.2.4 Conclusion

Our findings raise several ethical considerations. First, the fact that females are rated as less
intelligent yet more attractive than males corroborates the existence of harmful gender stereotypes
and the notion that physical appearance is inversely related to intelligence. Second, we find that
male raters are more influenced by beauty filters than female raters, raising concerns about how
beauty filters may reinforce existing societal biases, potentially perpetuating gender discrimination
and reinforcing traditional gender roles. Finally, while our study suggests that beauty filters could
mitigate the intensity of the attractiveness halo effect, their use raises questions about authenticity
and honesty. Thus, there is a need for transparency and ethical guidelines surrounding the use of
beauty filters, especially in contexts where individuals may be influenced in their decision-making
by filtered images without their knowledge. In sum, our findings underscore the complex interplay
between technology, social perceptions and ethics, highlighting the need for a deeper understanding
of the implications of beauty filters.

4.2.5 Relevant Publications

• Gulati, A., Martinez-Garcia, M., Fernández, D., Lozano, MA., Lepri, B., & Oliver, N. (2024).
What is beautiful is still good, especially if you are man: The Attractiveness Halo Effect
in the era of AI-based Beauty Filters. International Conference on Computational Social
Science.
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(a) Attractiveness

(b) Intelligence (c) Trustworthiness

Figure 23. Impact of rater’s and stimulus’ gender on attractiveness and the dependent variables in the PRI and
POST sets. The x-axis represents the gender of the rater and the colours represent the gender of the stimulus (pink
[•] for images of females and blue [•] for images of males). The width of the bars corresponds to the 95%
confidence interval of the Estimated Marginal Mean (EMM) [7, 8]. The y-axis depicts the relative change in the
EMM from the EMM of female stimuli rated by female participants.

• Gulati, A., Martinez-Garcia, M., Fernández, D., Lozano, MA., Lepri, B., & Oliver, N. (2024).
What is beautiful is still good: The Attractiveness Halo Effect in the era of AI-based Beauty
Filters. International Conference on Thinking.

4.2.6 Relevant Software and/or External Resources

• https://github.com/gulu42/theBeautySurveyAnalysis

4.3 Detection of Cognitive Biases in Global News
Contributing partners: JSI

4.3.1 Introduction and Methodology

In this section, we describe the path towards identifying biases related to technologies in global
news. Based on experiments conducted by psychologist Peter Wason in 1960s (Wason’s rule dis-
covery task), it was demonstrated that people tend to seek information that confirms their existing
beliefs [284]. In our research work we intend to explore the possible confirmation bias related to
technologies, along with several other biases:

• Negativity bias: the tendency for the brain to subconsciously place more significance on
negative events than positive ones.
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• Proximity bias: is the subconscious tendency to give preferential treatment to people/events
that are physically close. As an example, a person employee being considered for a raise
before a remote employee because they are in the immediate vicinity of their superior is an
example of proximity bias.

• Recency bias: the tendency for the brain to subconsciously place more value on the last
information it received about a topic.

• Confirmation bias: The tendency for the brain to value new information that supports exist-
ing ideas.

Specifically, the news analysis is based on multi-lingual and cross-lingual data obtained from the
Event Registry (ER) service [285]. ER is the world’s leading news intelligence platform, empowering
organizations to keep track of world events and analyze their impact. ER provides content from over
150,000 news sources in 40+ languages, minutes after it has been published. Fig.24 demonstrates
the user interfacte of ER service. One of the benefits of using ER service for detection of bias in
news is easy to integrate news API to obtain access to real-time as well as archive news content.

Figure 24. Interface for Event Registry service

The methodology for bias detection in news is based on several steps, such as:

• Obtaining set of news related to Artificial Intelligence technologies (specifically related to in-
cidents associated with AI technologies). For this purpose we have used semantic annotation
techniques and the InnoGraph Artificial Intelligence Taxonomy [286].Artificial Intelligence
taxonomy uses Wikipedia articles (and categories) as the core part, since every important
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Figure 25. AI technologies: ontology concept example.

topic related to AI (old, new, emerging, popular, etc.) will most likely have an article on
Wikipedia that can serve as a starting point. Wikipedia categories are used to classify ar-
ticles, and to form a hierarchy. They are the result of a collective curation effort to create
a taxonomy of Wikipedia articles. Categories are used as a way of finding relevant articles.
The current taxonomy version contains around 7.000 concepts and is regularly maintained.

• We have used filtering for specific topics (based on the taxonomy concept). Fig.25 provides
an example of ontology concept used for news filtering.

• In current wave of experiments LLM techniques have been applied for identification of specific
information in news.

• The produced initial results have been analyzed and prepared for future exploration.

4.3.2 Experiments and Results

In the current experimental setting we have analyzed 2,753 news items related to ”self-driving cars”
and with LLMs (specifically, ChatGPT 3.5) identified the following information in each news:
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(a) Initial sentiment analysis

(b) Initial emotions analysis.

• actors (name and type)

• technologies (name and type)

• relations (actor, technology, relation type)

• hypothesis (main hypothesis, confirming evidence, disconfirming evidence, sentiment, emo-
tion and actor attitude toward hypothesis )

The example of main hypothesis: ”Apple hopes to build a truly autonomous vehicle intelligence”.
Confirming evidence: ”Apple’s approach to deploy intelligence at the edge rather than in the
cloud”. Disconfirming evidence: ”Safety drivers taking control of experimental self-driving cars
approximately one time for every mile driven”. Following that, we have analyzed the sentiment
and emotions related to main hypothesis from news. The results are visualized on Figs. 26a and
26b. The further steps would include exploration of the outcomes related to agents as news sources,
detection of signals over time and exploration of proximity signals for technologies from news.

4.3.3 Conclusion

In conclusion, the current experiments confirm the applicability of LLMs for bias identification in
news. However, more experiments are required to identify and build the appropriate and useful
strategies for different types of biases.

4.3.4 Relevant Publications

• I. Novalija, L. Rei, J. Pita Costa and M. Grobelnik. ”Identifying Bias Related to Technologies
in News”, SIKDD Conference Proceedings 2024, October 2024 (in preparation)

• J. Pita Costa and I. Novalija. ”Exploring data bias with large language models, moving the
sustainable development goals forward”, proceedings of the Anna Lindh Foundation policy
dialogue in the Euro-Mediterranean region with their evidence-based research or relevant
practical experience, 2024 (in preparation)
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• M. Jermol and J. Pita Costa, ”Onwards to an Ethical Education for Sustainability through
AI”, special issue of the Journal of Artificial Intelligence and Sustainable Development (in
preparation)
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Bias Brief Description Relevance to AI

P
re

se
nt

at
io

n

Decoy effect
[190, 191,
192, 193]

Placing deliberately a worse alterna-
tive between two choices can reverse
the user’s preference

Could AI systems learn to place decoys effectively
while presenting alternatives? Could AI systems
learn to identify decoys? [194]

Framing
effect
[195, 196,
197, 198]

How a statement is framed can alter
its perceived value

Studies have shown that when humans are placed
in human-AI teams, their decisions [199] and trust
[200] are impacted by the framing effect. Could
AI systems learn to frame explanations to make
them more trustworthy?

Anchoring
effect [186,
201, 202]

Human decision making is influenced
by certain reference points or an-
chors

The use of anchors to alter user preferences has
been studied in marketing and recommender sys-
tems [203]. Could AI systems automatically iden-
tify anchors that humans might be subject to?

Pseudocertainty
effect [195,
204, 205]

Humans incorrectly estimate the cer-
tainty of statements in a multi-stage
decision making process

Could AI systems identify situations where hu-
mans are likely to be unable to accurately com-
pute the “complete picture”? Could this effect
be leveraged by AI algorithms to learn effectively
from smaller datasets?

In
te

rp
re

ta
ti

on

Conjunction
fallacy
[206, 207,
208, 209]

In certain situations, humans see the
conjunction of two events as being
more likely than any one event indi-
vidually

Could AI systems recognize situations where hu-
mans are likely to make such errors and provide
alternate decisions?

Base Rate
fallacy
[210, 211]

Humans have a tendency to ignore
the base rate information when mak-
ing decisions

Human reasoning does not follow Bayesian rea-
soning in certain settings. Could AI systems lever-
age these non-Bayesian computations effectively?

Gamblers
fallacy
[186, 212,
213, 214]

Humans tend to overvalue the im-
pact of past events when predicting
the outcome of independent future
events

Decision making systems that learn from human
decision making –e.g. legal, college admissions
or HR decision-making systems– learn from data
that reflects the gamblers fallacy. How could
this bias be mitigated to design fairer AI-based
decision-support systems?

Hyperbolic
discounting
effect [215,
216, 217]

Humans tend to choose immediate
rewards over rewards that come later
in the future

Studies have shown a link between high social me-
dia usage and hyperbolic discounting leading to
unhealthy behavior [218, 219]. Could AI systems
recognize when we are impacted by this bias and
help mitigate it?

Table 12. Selected biases in Presentation and Interpretation categories of the proposed taxonomy and their
relevance to the study of AI systems.
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Bias Brief Description Relevance to AI

V
al

ue
A

tt
ri

bu
ti

on

Halo effect
[220, 221,
222, 223]

Positive attributes associated with
a person in one setting carry over
other settings

Could this effect be utilized to create systems that
are easier to trust? Does the halo effect mani-
fest itself when humans interact with chatbots or
robots?

IKEA effect
[224, 225,
226]

Humans associate a higher value to
their own creations than those of oth-
ers

Could this effect be leveraged to provide explana-
tions that users are more likely to accept?

Risk aver-
sion bias
[227, 228,
229, 230]

We tend to avoid risky decisions even
if they have a higher net expected
utility than less risky options, espe-
cially if the uncertainty is high

Could AI systems support human decision-
making by counter-balancing the risk aversion
risk?

Social desir-
ability bias
[231, 232,
233, 234]

Humans tend to provide the answers
to surveys or questions that they be-
lieve are expected from them

Do people provide socially desirable answers even
when they are interacting with or being evaluated
by machines? If yes, could the social desirability
bias be be leveraged to nudge users to improve
their behavior?

R
ec

al
l

False mem-
ory bias [235,
236, 237]

Humans incorrectly remember a
past event depending on the ques-
tions they are asked about the event

False memories impact how we make decisions.
Positive false memories have been shown to have
positive consequences [238]. Could this AI sys-
tems use this effect to improve user experience?

Self-
reference
effect
[239, 240]

Events with a direct impact are more
likely to be remembered

Could AI systems leverage this effect to make
explanations about their behavior more “memo-
rable”?

Serial-
positioning
effect [241,
242, 243]

Items at the start and the end of a
list are more memorable than those
in the middle

When providing explanations, could AI systems
leverage this bias to have a more effective human
interaction?

Peak-end
rule [244,
245, 246]

The value of an event tends to be
assessed based on its peak and final
values, neglecting other parameters,
such as its duration or average value

Could this bias be leveraged by AI systems to
increase the perceived utility of hard tasks? In-
stead of maximizing the time a user stays on a
social media platform, could this bias be used to
reduce time spent while also increasing user sat-
isfaction?

Table 13. Selected biases in the Value Attribution and Recall categories of the proposed taxonomy and their
relevance to the study of AI systems.
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Bias Brief Description Relevance to AI

D
ec

is
io

n

Status
quo bias
[247, 248]

Humans tend to make decisions that
maintain the current state rather
than changing it

Are AI systems that recommend fewer changes
more likely to be trusted?

Shared infor-
mation bias
[249, 250,
251]

In group settings, humans tend to fo-
cus the discussion on information ev-
eryone already has rather than try-
ing to bring in new information

Could AI systems leverage this bias to effectively
drive group conversations?

Naive allo-
cation [252,
253, 254]

People tend to allocate resources
equally between all options rather
than based on the value of the op-
tions

Could AI systems provide alternatives to avoid
naive allocation? Alternatively, could AI systems
leverage this bias effectively to make decisions in
high uncertainty situations?

Take-the-
best heuris-
tic [255]

The decision between two alterna-
tives is made based on the first cue
that discriminates them

Could this heuristic be implemented in AI sys-
tems to learn efficiently from small datasets?
[256]

Table 14. Selected biases in the Decision category of the proposed taxonomy and their relevance to the study of AI
systems.

Cognitive
Bias Confirmation Bias

Definition
The tendency of individuals to seek, interpret, and remember infor-
mation in a way that confirms their preexisting beliefs or hypothe-
ses, while ignoring or dismissing contradictory evidence.

Example

Sam believes that a certain dietary supplement has remarkable
health benefits. They regularly read online forums and articles
that promote the supplement’s positive effects, and they tend to
ignore or dismiss any information suggesting potential risks or in-
effectiveness.

AI’s Role

Detecting the bias: Through the collection and analysis of both
relevant online content and Sam’s information consumption behav-
ior related to the dietary supplement, machine learning algorithms
could be used to detect the existence of the confirmation bias.
Counteracting the bias: Machine learning-based recommendation
algorithms could recommend diverse perspectives and evidence-
based information to challenge Sam’s preconceived notions and en-
courage a more balanced understanding of the supplement’s prop-
erties.

Table 15. Example of how AI could support humans in mitigating the confirmation bias.

64



Dependent
Attribute (ω)

PRI POST

β0 β1 R2 β0 β1 R2

Intelligence 3.18*** 0.30*** 0.327 4.11*** 0.12*** 0.036
Trustworthiness 3.34*** 0.20*** 0.181 3.50*** 0.17*** 0.069

Sociability 2.56*** 0.39*** 0.363 2.78*** 0.38*** 0.321
Happiness 2.08*** 0.39*** 0.261 2.47*** 0.35*** 0.186

Table 16. Parameters of the linear model ω = β0 + β1Attrac + ϵ for each dependent variable ω on the PRI and
POST sets independently. A larger absolute value of the intercept β0 in the POST set indicates that the value of the
perceived attribute increases after applying a beauty filter. A smaller absolute value of β1 in the POST set reflects a
weaker halo effect after beautification.
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5 T3.4 Privacy-Preserving Machine Learning
5.1 Model-Agnostic Federated Learning with a Privacy Perspective
Contributing partners: ALC

5.1.1 Introduction and Methodology

Federated Learning (FL) has been proposed as a privacy-preserving solution for machine learn-
ing [287]. In FL, the sensitive data never leaves the device of the holder. The idea is that instead,
the holders, called clients train their own machine learning models. In the scenarios it is used, the
clients do not have enough data to train a good model alone. Thus, the clients collaborate with
each other by sharing the model parameters with a server that aggregates these parameter updates
to generate a global model. Then, the server can broadcast the global model that benefited from
the knowledge of each client. These steps together are called a training round and a FL training
can consist several round until it converges to a model that solves the given task.

Recent works have reported that FL can leak private client data through membership inference
attacks conducted on the parameters shared between clients and server to retrive information
about the original training data [288, 289]. For traditional machine learning it has been shown
that the effectiveness of these attacks on the model negatively correlates with the complexity of
the model [290].

With this motivation in mind, the work in this task focuses on analyzing the privacy and
performance implications of FL methods that leverage the use of different model complexity on
the clients. We aim to use smaller model complexity on clients that have higher privacy risk.
We investigate the effect of chosing algorithms to project the server’s larger model to the clients’
smaller ones.

Model-agnostic federated learning The simplest form of federated learning is the method
called federated average (FedAvg) [287]. In FedAvg, the clients train the same model as the server
using their own dataset, such that the average of the clients’ model weights is an approximation
of training the same model in a centralized machine with access to all client data. That is, FedAvg
computes minθ L(θ), given by:

min
θ

L(θ) = min
θ

1

|D|

C∑
c=1

∑
(x,y)∈Dc

l(y, f(x,θ)) ≈ 1

C

C∑
c=1

min
θc

Lc(θc,Dc) (16)

where L is the loss function in the server when having access to all the client data; l is the loss
function in each client; θ and f are server model parameters and server architecture, respectively.
The loss at each client Lc(θc,Dc) is given by 1

|Dc|
∑

(x,y)∈Dc
l(y, f(x,θc)), where C is the number

of clients; θc is the client model parameters; and Dc represents the dataset of client c such that
D =

∪C
c=1 Dc corresponds to the entire dataset. In this example, the model architecture f is shared

between clients and server.
A Federated Learning architecture is called model-agnostic when the machine learning model ar-

chitecture is different –typically smaller– in the clients than in the server. To enable the federation,
one can leverage knowledge distillation [291, 292], or perform parameter aggregation if the clients
share a subset of the server’s model architecture fc ⊂ f [293, 294]. For example, if the federation
performs a computer vision task using CNNs both in the server and the clients, this translates to
a smaller number of input and output channels in clients with smaller model complexity than the
server’s. Our research investigates this latter scenario.
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Membership inference attacks (MIAs) While FL was initially motivated by the desire
to preserve client data, recent studies have revealed that federated systems remain vulnerable to
privacy attacks, specifically in the form of membership attacks [295, 296, 297, 298]. In our work,
we focus on membership inference attacks (MIAs) [299], where the attacker’s goal is to determine
whether an individual data point was part of the dataset used to train the target model. While
MIAs expose less private information than other attacks, such as memorization attacks, they are
still of great concern as they constitute a confidentiality violation [300]. Membership inference can
also be used as a building block for mounting extraction attacks for existing machine learning as a
service systems [289]. Several types of MIAs have been proposed in the literature [301, 302, 303].

Attacks can occur on the client or the server-side: (1) client exposure or attack occurs when
the attacker targets the client model, (fc,θ

t
c), for client c = 1, . . . , N in training round t =

1, . . . , T . In a stateful setting [304], the attacker can collect a set of k ≤ T client updates in
Θc = {θτ1

c , . . . , θτk
c }, τi ∈ {1, .., T} training rounds; (2) server exposure or attack takes place when

the attacker is able to listen to the parameter θt updates that are broadcasted by the server to the
clients. The attacker aims to identify the entire training dataset D =

∑
c Dc. In this paper, we

consider black-box, passive, client-side attack on the last update sent from the client to the server
θT
c where the attacker aims to identify instances of the client’s dataset Dc for client c.
In a black-box attack, the attacker has no direct access to the model’s parameters θg and

architecture f , but it can query the model with data instances to get the model prediction ŷ. The
attacker’s purpose is to build an attacker model A that predicts, for data instance (x, y), if it was
part of the training data Dg of model M(f,θg,Dg), where the subscript g can denote both the
server and each of the clients. Passive attackers observe the behavior of a system without altering
it, while active attackers engage with the system by modifying inputs or parameters to exploit
vulnerabilities or extract information.

Formally, the perfect attacker’s model A is given by:

A(f,θg, (x, y)) =

{
1, if (x, y) ∈ Dg,M(f,θg,Dg)

0, otherwise.
(17)

In this work, we study the performance of three different black-box, membership inference
attacks:

• Yeom attack: In this light-weight, loss-based attack [290], the attacker chooses a global
threshold ν, and selects every data instance with a loss lower than ν as a member of the
training dataset.

• LiRA attack: In the offline version of the attack of [305], the attacker has an auxiliary dataset
Da and trains shadow models Msw(f,Dsw) on random subsets of this dataset Dsw ⊂ Da. The
data instance is predicted to be a member of the client’s training set if the target model’s
confidence score fits into the sample’s confidence score distribution in the shadow models.

• tMIA attack: a state-of-the-art attack that uses knowledge distillation to collect loss trajec-
tories to identify member and non-member instances [306]. The method builds on the idea
that the snapshots of the loss after each training epoch (loss trajectory) can separate the
member instances from non-members better than only using the final model’s loss.

5.1.2 A Taxonomy of Channel Selection Algorithms

In this research, we explore the field of model-agnostic federated learning with shared model weights
(fc ⊂ f) in CNNs. In this context, two popular methods are FDropout and HeteroFL.
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In FDropout [293], all the clients learn a CNN with the same architecture but fewer parameters
(smaller weight matrices) than the server, and the server randomly drops a fixed number of units
from each client [307], mapping the sparse model to a dense, smaller network by removing the
dropped weights.

HeteroFL [294] follows a similar idea as FDropout but with two key differences when selecting
the channels in the clients with smaller models than the server: 1) all the clients learn from the
same portion of the server’s model; and 2) instead of randomly dropping cells, the clients always
keep the top-left subset of the server’s weight matrix for each layer in the network. Thus, in
HeteroFL, the weight matrix Al

c of size Nc ×Mc in layer l and client c corresponds to the top-left
sub-matrix of the server’s weight matrix Al of size N ×M .

We propose a taxonomy of channel selection methods that reveals the similarities of these two
methods and enables us to identify gaps which we fill by implementing seven more model-agnostic
FL algorithms. Figure 27 presents the proposed taxonomy and its three dimensions.

The first dimension of the taxonomy refers to coverage, classifying the methods in three classes:
one group (O); several groups (G); and unique (U), depending on the number of channel sets used
to train in the clients with smaller models than the server’s model. In one group, each client selects
the same set of channels. In several groups, clients are clustered in groups such that clients in the
same group use the same set of channels (Figure 27 shows an example with 4 groups). Unique
corresponds to federations where every client has their set of channels selected individually.

The second dimension characterizes the strategy for channel selection and defines two types:
fixed (F) methods when the channel sets are defined at the beginning of the training, and resampled
(S) methods when the channel sets are selected in each training round.

Finally, the third dimension divides methods into two kinds: submatrix (M) methods if the
selected channels are the first or second half of the full channel list and random (R) methods if the
channels are selected randomly.

According to the proposed taxonomy, FDropout corresponds to a USR method because each
client has a different, random set of channels in each training round, while HeteroFL corresponds
to an OFM method as there is only one client group with fixed channels that correspond to a
sub-matrix of the server’s weight matrix.

Each of the proposed methods is anticipated to provide a different privacy-accuracy trade-off,
depending on how the clients select the portions of the server’s matrix to use in their training. We
formulate below three hypotheses in this regard that we validate empirically in our experiments.

H1: Frequency Hypothesis. We hypothesize that methods where clients have access to the
same set of channels more frequently perform better in terms of client model accuracy but have
a worse client-level privacy. For example, in GFM the clients access the same set of channels every
four rounds. Thus, compared to HeteroFL and FDropout, we expect this method to yield a client
privacy-performance trade-off between these two existing methods.

Based on this hypothesis we expect:

• OSR, GSR, and USR (i.e., FDropout) to be the most resilient methods against MIAs but provide
the worst client accuracy as the clients receive the parameters from a new set of channels in
every round. Therefore, the same set is only repeated in every

(
N
Nc

)
rounds on average for

client c with client channel size Nc and server channel size N .

• OFM (i.e., HeteroFL) and OFR to be the most vulnerable against MIAs but achieve high client
accuracies as the clients train using the parameters of the same set of channels in every round
(1 round).

H2: Similarity between the M and R categories. In a CNN layer, as long as the selected
input channels of layer l match the output channels of layer l−1, the differences between variations
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Figure 27. Taxonomy of channel selection methods for model-agnostic FL architectures with fixed model size in
the clients. The server and the clients learn the same type of models (e.g. CNNs) but with different numbers of
units. The clients with smaller models need to select channels from the server’s model as part of their learning
process. The taxonomy considers three dimensions: a) Number of clients learning from the same server channels:
one group (O), four groups (G), all unique clients (U); b) Channel group selection: fixed at the beginning of the
training (F), sampled in each round (S); and c) Channel selection: according to a submatrix structure (M),
randomly (R).

M and R should be small. They differ only in the number of channels shared by client groups. We
designed the sub-matrix category (M) to minimize the channel overlap between groups. Thus, we
expect the models in the M and R categories to behave similarly.

H3: The differences in the privacy-accuracy trade-off between the methods de-
crease as the number of large clients in the federation increases The channel selection
methods discussed in this paper are relevant when the majority of the clients learn smaller models
than the server’s model. In fact, in cases when all the clients but one learn models of the same
complexity as the server’s model, the UFR and OFR methods become the same. Therefore, we ex-
pect the impact of the channel selection strategies to be larger when the majority of clients in the
federation learn smaller models than the server’s model.

We perform a comparative analysis of the proposed model-agnostic FL methods and empirically
validate our hypotheses in experiments on two vision datasets, as described next.

5.1.3 Experiments and Results

We conducted experiments on vision datasets CIFAR-10, CIFAR-100, and FEMNIST simulating
10 clients in federated learning settings with a simple convolutional neural network (CNN) with 4
convolutional layers and one fully connected layer at the end following [294].

Model complexity, privacy and dataset size. Previous work has shown that as models
get more complex, they are more vulnerable to MIAs. For example, [290] demonstrate that their
attack’s accuracy increases as the model size increases on standard benchmark image datasets.

In Federated Learning, [308] reported that, the larger the models, the more vulnerable they
are to model memorization attacks. In their case, it was a horizontal FL architecture with the
same model (ResNet) both in the server and the clients. Other works have highlighted that over-
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parameterized models are vulnerable to membership memorization attacks [309].
In this experiment, we shed further light on this topic by focusing on the privacy-accuracy

trade-off in FL with respect to dataset and model size, and from the perspective of both the server
and the clients. Note that prior studies have only analyzed the server’s performance.

By means of an empirical illustrative example, we show that, for a given model and an FL
scenario, there is a strong negative correlation between the size of the clients’ datasets and models,
and their vulnerability against membership inference attacks (Yeom in our example).

As previously discussed, this attack occurs on the last update the client sends to the server in
round T , AYeom(θ

T
c ). We use the Yeom attack for this illustrative experiment as it requires signifi-

cantly less computation than the other described MIAs. We report the attack advantage [310],
the improvement of an attack when compared to the baseline random guess on a balanced test set,
that yields 50% attack accuracy. Therefore the attack advantage is Adv(A) = 2(Acc(A) − 50),
where Acc(A) is the accuracy of the attacker’s model.

Figure 28 describes the results of this experiment. We observe strong negative correlations
between the size of the clients’ dataset and the attack’s advantage; and between the clients’ model
complexity and the corresponding attack’s advantage. We also observe that both the attacker’s
advantage and the test accuracy on the clients increase as the model size increases. These results
suggest that model-agnostic FL could enhance privacy both in the server and the clients by means
of learning models in the clients that are smaller than the server’s model.

(a) (b)

Figure 28. (a): Exemplary illustration of the correlation between the privacy attack advantage for the Yeom attack
and the dataset size from the clients’ perspective. Results for 5 repeated experiments on the CIFAR-10 dataset
using the FedAvg architecture with 10 clients having different dataset sizes, resulting in 50 client models. Each dot
depicts a client in one federated training and the color represents different model complexities (CNNs),
characterized by the number of parameters, ranging from 30k to 1.6 million. Note the negative correlations
between the size of the clients’ dataset and the attack advantage, as well as between the model’s complexity and the
associated attack advantage. (b): Privacy-accuracy trade-off of the data depicted in (a) by averaging experiments
across clients per model complexity. In addition to CIFAR-10, we also show the trade-off for the CIFAR-100 and
FEMNIST datasets. The attacker’s advantage and test accuracy on the clients increases as the model size
increases. Observations in (a) and (b) suggest that model-agnostic FL could be a privacy-enhancing solution.

Privacy of model-agnostic methods We train the 9 model-agnostic channel selection meth-
ods in a FL architecture with 10 clients, of which 2, 5, or 8 clients learn small models and the rest
learn models of the same complexity as the server’s model. Clients with a smaller dataset size are
selected first to learn smaller models. We also train two FedAvg baselines where the server and all
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the clients learn models with the large and the reduced model sizes. This results in training 29 FL
models for each data distribution.

Each client is subject to the 3 previously described MIAs. For LiRA and tMIA, the auxiliary
dataset is drawn from the data of the rest of the clients Dc

a = {D1, ...,DC} \ Dc. We use the same
shadow models to attack models from the same experiment. We train 16 shadow models for LiRA
and use 25 distill epochs for tMIA.

Figure 29 depicts the average attack AUC of the 3 MIAs on all the model-agnostic FL channel
selection methods with 2 large clients. Experiments on CIFAR-10 and CIFAR-100 corroborate our
first hypothesis H1 related to the accuracy-privacy trade-off. From a client perspective, methods
GFM and GFR achieve similar results to the FedAvg30k baseline with small models, yet, they out-
perform FedAvg30k on the server-side accuracy (77.89% and 78.19% over 69.04% for CIFAR-10
and 43.05% and 43.17% over 34.01% for CIFAR-100). Furthermore, their privacy compared to
HeteroFL is better by 0.5− 1.0% AUC with very similar levels of client accuracy. FDropout, and
the GSR and OSR methods perform well in terms of client privacy, but their client accuracy is
significantly lower when compared to the rest of the methods.

Supporting our H2 hypothesis, methods GFR and GFM, and methods OFR and OFM yield similar
results in all three measures on the two datasets, with OFM (HeteroFL) and OFR on CIFAR-100
being the closest with differences of only 0.2%, 0.6%, and 0.02% on the server accuracy, client
accuracy, and attack AUC, respectively.

Interestingly, while the OSM method performs as expected on the client side, it outperforms
every method on its server-side accuracy. Therefore, it provides the best server accuracy-client
privacy trade-off from all the studied model-agnostic FL methods.

(a) (b)

Figure 29. Experiments to measure the client-side accuracy, server-side accuracy and the client’s privacy. MIA
vulnerability averaged over the 3 attacks (Yeom, LiRA, tMIA). All model-agnostic FL architectures have 2 clients
with large models and 8 clients with small models. FedAvg30k and FedAvg100k are the baselines with 10 small
(30k parameters) and 10 large (100k parameters) clients respectively.

5.1.4 Conclusion

Our findings can be summarized in three points. Firstly, model compression helps against
MIAs in FL. We showed that the relation between the model complexity and privacy that was
observed in traditional machine learning holds in FL and FL with agnostic models. Secondly,
we constructed a novel taxonomy of heterogeneous FL methods and proposed seven new
models. Lastly, the channel selection strategy in heterogeneous FL matters in terms of
client-side privacy, accuracy and server-side accuracy.
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5.1.5 Relevant Publications

• [311] G. D. Németh, M. Á. Lozano, N. Quadrianto, and N. Oliver, “Addressing membership in-
ference attack in federated learning with model compression,” arXiv preprint arXiv:2311.17750,
2023.
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6 Ongoing Work and Conclusions
This deliverable report provides a detailed overview of the progress achieved by M12 in tasks T3.2,
T3.3 and T3.4.

Concerning Task T3.2, the report focuses on advancements in fairness and counterfactual in-
terventions, covering a range of topics such as bias mitigation in multimodal systems, fairness
measurement using Shapley values, removal of toxic content from vision-language models, early de-
tection of hallucinations in diffusion models, and the application of fuzzy logic to quantify fairness.
Task T3.3 explores the presence of cognitive biases in AI systems and human biases triggered by
AI-generated beauty filters, as well as methods to detect cognitive biases in news media. Task T3.4
addresses privacy-preserving machine learning, with an emphasis on federated learning, showing
that larger datasets and more complex models improve resistance to membership inference attacks.
The report also discusses the potential of model-agnostic federated learning to enhance privacy by
allowing clients to utilize models with varying complexities.

Overall, the activities carried out in this work package have been substantial, including eight
papers published in top conferences and journals, two preprints, and two additional papers cur-
rently in preparation. These accomplishments are well distributed among the contributing research
groups, reflecting their active engagement and commitment to the objectives of the work package.
The significant number of publications and ongoing work attests to the efforts of the partners in
advancing the project’s goals. This deliverable covers only the initial results; however, the current
trajectory indicates that we are progressing well in line with the original plan.

73



References
[1] Z. Wang, Z. Sha, Z. Ding, Y. Wang, and Z. Tu, “TokenCompose: Grounding Diffusion with

Token-level Supervision,” arXiv preprint arXiv:2312.03626, 2023.

[2] F. Friedrich, M. Brack, L. Struppek, D. Hintersdorf, P. Schramowski, S. Luccioni, and
K. Kersting, “Fair diffusion: Instructing text-to-image generation models on fairness,” arXiv
preprint, 2023.

[3] C. Zhang, X. Chen, S. Chai, C. H. Wu, D. Lagun, T. Beeler, and F. De la Torre, “Iti-gen:
Inclusive text-to-image generation,” in ICCV, 2023.

[4] P. J. Kenfack, K. Sabbagh, A. R. Rivera, and A. Khan, “Repfair-gan: Mitigating represen-
tation bias in gans using gradient clipping,” arXiv preprint, 2022.

[5] D. Podell, Z. English, K. Lacey, A. Blattmann, T. Dockhorn, J. Müller, J. Penna, and
R. Rombach, “SDXL: Improving latent diffusion models for high-resolution image synthesis,”
in ICLR, 2024.

[6] P. Schramowski, M. Brack, B. Deiseroth, and K. Kersting, “Safe Latent Diffusion: Mitigating
Inappropriate Degeneration in Diffusion Models,” in CVPR, 2023.

[7] S. R. Searle, F. M. Speed, and G. A. Milliken, “Population marginal means in the linear
model: An alternative to least squares means,” The American Statistician, vol. 34, p. 216–
221, Nov. 1980.

[8] R. V. Lenth, emmeans: Estimated Marginal Means, aka Least-Squares Means, 2023. R
package version 1.9.0.

[9] C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. L. Denton, K. Ghasemipour, R. Gon-
tijo Lopes, B. Karagol Ayan, T. Salimans, et al., “Photorealistic text-to-image diffusion
models with deep language understanding,” NeurIPS, 2022.

[10] A. Nichol, P. Dhariwal, A. Ramesh, P. Shyam, P. Mishkin, B. McGrew, I. Sutskever, and
M. Chen, “Glide: Towards photorealistic image generation and editing with text-guided
diffusion models,” in International Conference on Machine Learning, 2022.

[11] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, “Hierarchical text-conditional
image generation with clip latents,” arXiv preprint, 2022.

[12] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution image
synthesis with latent diffusion models,” in CVPR, 2022.

[13] N. Ruiz, Y. Li, V. Jampani, Y. Pritch, M. Rubinstein, and K. Aberman, “Dreambooth: Fine
tuning text-to-image diffusion models for subject-driven generation,” in CVPR, 2023.

[14] R. Gal, Y. Alaluf, Y. Atzmon, O. Patashnik, A. H. Bermano, G. Chechik, and D. Cohen-Or,
“An image is worth one word: Personalizing text-to-image generation using textual inversion,”
arXiv preprint, 2022.

[15] D. Epstein, A. Jabri, B. Poole, A. A. Efros, and A. Holynski, “Diffusion self-guidance for
controllable image generation,” in NeurIPS, 2023.

[16] T. Brooks, A. Holynski, and A. A. Efros, “Instructpix2pix: Learning to follow image editing
instructions,” in CVPR, 2023.

74



[17] A. Hertz, R. Mokady, J. Tenenbaum, K. Aberman, Y. Pritch, and D. Cohen-Or, “Prompt-
to-prompt image editing with cross attention control,” in ICLR, 2022.

[18] V. Goel, E. Peruzzo, Y. Jiang, D. Xu, X. Xu, N. Sebe, T. Darrell, Z. Wang, and H. Shi, “Pair-
diffusion: A comprehensive multimodal object-level image editor,” arXiv preprint, 2023.

[19] O. Avrahami, T. Hayes, O. Gafni, S. Gupta, Y. Taigman, D. Parikh, D. Lischinski, O. Fried,
and X. Yin, “Spatext: Spatio-textual representation for controllable image generation,” in
CVPR, 2023.

[20] L. Zhang, A. Rao, and M. Agrawala, “Adding conditional control to text-to-image diffusion
models,” in ICCV, 2023.

[21] L. Huang, D. Chen, Y. Liu, Y. Shen, D. Zhao, and J. Zhou, “Composer: Creative and
controllable image synthesis with composable conditions,” in ICML, 2023.

[22] J. Cho, A. Zala, and M. Bansal, “Dall-eval: Probing the reasoning skills and social biases of
text-to-image generation models,” in ICCV, 2023.

[23] T. Bolukbasi, K.-W. Chang, J. Y. Zou, V. Saligrama, and A. T. Kalai, “Man is to computer
programmer as woman is to homemaker? debiasing word embeddings,” in NeurIPS, 2016.

[24] L. A. Hendricks, K. Burns, K. Saenko, T. Darrell, and A. Rohrbach, “Women also snowboard:
Overcoming bias in captioning models,” in ECCV, 2018.

[25] J. Zhao, T. Wang, M. Yatskar, V. Ordonez, and K.-W. Chang, “Men also like shopping:
Reducing gender bias amplification using corpus-level constraints,” in EMNLP, 2017.

[26] R. Naik and B. Nushi, “Social biases through the text-to-image generation lens,” in Proceed-
ings of the 2023 AAAI/ACM Conference on AI, Ethics, and Society, 2023.

[27] S. Verma and J. Rubin, “Fairness definitions explained,” in Proceedings of the international
workshop on software fairness, 2018.

[28] D. Xu, S. Yuan, L. Zhang, and X. Wu, “Fairgan: Fairness-aware generative adversarial
networks,” in 2018 IEEE International Conference on Big Data (Big Data), IEEE, 2018.

[29] J. Nam, H. Cha, S. Ahn, J. Lee, and J. Shin, “Learning from failure: De-biasing classifier
from biased classifier,” NeurIPS, 2020.

[30] Y. Savani, C. White, and N. S. Govindarajulu, “Intra-processing methods for debiasing neural
networks,” in NeurIPS, 2020.

[31] Z. Wang, K. Qinami, I. C. Karakozis, K. Genova, P. Nair, K. Hata, and O. Russakovsky,
“Towards fairness in visual recognition: Effective strategies for bias mitigation,” in CVPR,
2020.

[32] S. Jung, S. Chun, and T. Moon, “Learning fair classifiers with partially annotated group
labels,” in CVPR, 2022.

[33] S. Agarwal, S. Muku, S. Anand, and C. Arora, “Does data repair lead to fair models? curating
contextually fair data to reduce model bias,” in WACV, 2022.

[34] M. D’Inca, C. Tzelepis, Y. Patras, and N. Sebe, “Improving fairness using vision-language
driven image augmentation,” in WACV, 2024.

75



[35] X. Su, Y. Ren, W. Qiang, Z. Song, H. Gao, F. Wu, and C. Zheng, “Unbiased image synthesis
via manifold-driven sampling in diffusion models,” arXiv preprint, 2023.

[36] P. Young, A. Lai, M. Hodosh, and J. Hockenmaier, “From image descriptions to visual deno-
tations: New similarity metrics for semantic inference over event descriptions,” Transactions
of the Association for Computational Linguistics, 2014.

[37] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays, P. Perona, D. Ra-
manan, P. Dollár, and C. L. Zitnick, “Microsoft COCO: common objects in context,” in
ECCV, 2014.

[38] K. Karkkainen and J. Joo, “Fairface: Face attribute dataset for balanced race, gender, and
age for bias measurement and mitigation,” in WACV, 2021.

[39] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al., “Learning transferable visual models from natural language
supervision,” in ICML, 2021.

[40] P. Wang, A. Yang, R. Men, J. Lin, S. Bai, Z. Li, J. Ma, C. Zhou, J. Zhou, and H. Yang,
“Ofa: Unifying architectures, tasks, and modalities through a simple sequence-to-sequence
learning framework,” in ICML, 2022.

[41] C. Li, H. Xu, J. Tian, W. Wang, M. Yan, B. Bi, J. Ye, H. Chen, G. Xu, Z. Cao, et al.,
“mPLUG: Effective and efficient vision-language learning by cross-modal skip-connections,”
in Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing,
2022.

[42] J. Li, D. Li, C. Xiong, and S. Hoi, “Blip: Bootstrapping language-image pre-training for
unified vision-language understanding and generation,” in ICML, 2022.

[43] H. Liu, C. Li, Y. Li, and Y. J. Lee, “Improved baselines with visual instruction tuning,” in
NeurIPS 2023 Workshop on Instruction Tuning and Instruction Following, 2023.

[44] H. Liu, C. Li, Q. Wu, and Y. J. Lee, “Visual instruction tuning,” in NeurIPS, 2023.

[45] M. D’Inca, E. Peruzzo, M. Mancini, D. Xu, V. Goel, X. Xu, Z. Wang, H. Shi, and N. Sebe,
“Openbias: Open-set bias detection in generative models,” in CVPR, 2024.

[46] S. Barocas, M. Hardt, and A. Narayanan, Fairness and Machine Learning: Limitations and
Opportunities. The MIT Press, 2019.

[47] N. Smuha, “Ethics guidelines for trustworthy AI,” in AI & Ethics, Date: 2019/05/28-
2019/05/28, Brussels, Belgium, European Commission, 2019.

[48] N. Oliver, “Artificial intelligence for social good - The way forward,” in Science, Research and
Innovation performance of the EU 2022 report, ch. 11, pp. 604–707, European Commission,
2022.

[49] A. N. Carey and X. Wu, “The statistical fairness field guide: perspectives from social and
formal sciences,” AI and Ethics, pp. 1–23, 2022.

[50] M. Hardt, E. Price, and N. Srebro, “Equality of opportunity in supervised learning,” Advances
in Neural Information Processing Systems, vol. 29, 2016.

76



[51] M. B. Zafar, I. Valera, M. Gomez Rodriguez, and K. P. Gummadi, “Fairness Beyond Dis-
parate Treatment &; Disparate Impact: Learning Classification without Disparate Mistreat-
ment,” in International Conference on World Wide Web, p. 1171–1180, 2017.

[52] C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. Zemel, “Fairness through awareness,”
in Proceedings of the 3rd innovations in theoretical computer science conference, pp. 214–226,
2012.

[53] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan, “A survey on bias and
fairness in machine learning,” ACM Computing Surveys (CSUR), vol. 54, no. 6, pp. 1–35,
2021.

[54] F. Kamiran and T. Calders, “Data preprocessing techniques for classification without dis-
crimination,” Knowledge and information systems, vol. 33, no. 1, pp. 1–33, 2012.

[55] R. Zemel, Y. Wu, K. Swersky, T. Pitassi, and C. Dwork, “Learning fair representations,” in
International Conference on Machine Learning, pp. 325–333, PMLR, 2013.

[56] B. H. Zhang, B. Lemoine, and M. Mitchell, “Mitigating unwanted biases with adversarial
learning,” in Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society,
pp. 335–340, 2018.

[57] T. Kamishima, S. Akaho, H. Asoh, and J. Sakuma, “Fairness-aware classifier with preju-
dice remover regularizer,” in Joint European conference on machine learning and knowledge
discovery in databases, pp. 35–50, Springer, 2012.

[58] M. Feldman, S. A. Friedler, J. Moeller, C. Scheidegger, and S. Venkatasubramanian, “Certify-
ing and removing disparate impact,” in Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 259–268, 2015.

[59] P. Hacker and J.-H. Passoth, “Varieties of ai explanations under the law. from the gdpr to
the aia, and beyond,” in International Workshop on Extending Explainable AI Beyond Deep
Models and Classifiers, pp. 343–373, Springer, 2022.

[60] M. Madaio, L. Egede, H. Subramonyam, J. Wortman Vaughan, and H. Wallach, “Assessing
the fairness of ai systems: Ai practitioners’ processes, challenges, and needs for support,”
Proceedings of the ACM on Human-Computer Interaction, vol. 6, no. CSCW1, pp. 1–26,
2022.

[61] T. Gebru, J. Morgenstern, B. Vecchione, J. W. Vaughan, H. Wallach, H. D. Iii, and K. Craw-
ford, “Datasheets for datasets,” Communications of the ACM, vol. 64, no. 12, pp. 86–92,
2021.

[62] T. Hagendorff, “The ethics of ai ethics: An evaluation of guidelines,” Minds and Machines,
vol. 30, no. 1, pp. 99–120, 2020.

[63] A. Chouldechova and A. Roth, “A snapshot of the frontiers of fairness in machine learning,”
Communications of the ACM, vol. 63, no. 5, pp. 82–89, 2020.

[64] A. Ghorbani and J. Zou, “Data shapley: Equitable valuation of data for machine learning,”
in International Conference on Machine Learning, pp. 2242–2251, PMLR, 2019.

[65] L. S. Shapley, “A value for n-person games,” Contributions to the Theory of Games, vol. 2,
pp. 307–317, 1953.

77



[66] R. Jia, D. Dao, B. Wang, F. A. Hubis, N. M. Gurel, B. Li, C. Zhang, C. Spanos, and D. Song,
“Efficient task-specific data valuation for nearest neighbor algorithms,” Proc. VLDB Endow.,
vol. 12, no. 11, p. 1610–1623, 2019.

[67] R. Berk, H. Heidari, S. Jabbari, M. Kearns, and A. Roth, “Fairness in criminal justice risk
assessments: The state of the art,” Sociological Methods & Research, vol. 50, no. 1, pp. 3–44,
2021.

[68] J. Chai and X. Wang, “Fairness with adaptive weights,” in International Conference on
Machine Learning, vol. 162 of Proceedings of Machine Learning Research, pp. 2853–2866,
PMLR, 17–23 Jul 2022.

[69] F. Kamiran and T. Calders, “Classifying without discriminating,” in 2009 2nd international
conference on computer, control and communication, pp. 1–6, IEEE, 2009.

[70] R. Kohavi et al., “Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid.,”
in Kdd, vol. 96, pp. 202–207, 1996.

[71] J. Angwin, J. Larson, S. Mattu, and L. Kirchner, “Machine bias: There’s software used across
the country to predict future criminals. and it’s biased against blacks. propublica, may 23,”
2016.

[72] J. H. Friedman, “Greedy function approximation: a gradient boosting machine,” Annals of
statistics, pp. 1189–1232, 2001.

[73] H. Jiang and O. Nachum, “Identifying and correcting label bias in machine learning,” in
International Conference on Artificial Intelligence and Statistics, pp. 702–712, PMLR, 2020.

[74] F. Calmon, D. Wei, B. Vinzamuri, K. Natesan Ramamurthy, and K. R. Varshney, “Optimized
pre-processing for discrimination prevention,” in Advances in Neural Information Processing
Systems, vol. 30, 2017.

[75] P. Li and H. Liu, “Achieving fairness at no utility cost via data reweighing with influence,”
in International Conference on Machine Learning, vol. 162, pp. 12917–12930, PMLR, 17–23
Jul 2022.

[76] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in the wild,” in
Proceedings of the IEEE international conference on computer vision, pp. 3730–3738, 2015.

[77] K. Karkkainen and J. Joo, “Fairface: Face attribute dataset for balanced race, gender, and
age for bias measurement and mitigation,” in Proceedings of the IEEE/CVF Winter Confer-
ence on Applications of Computer Vision, pp. 1548–1558, 2021.

[78] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4, inception-resnet and
the impact of residual connections on learning,” in Thirty-first AAAI conference on artificial
intelligence, 2017.

[79] E. Albini, J. Long, D. Dervovic, and D. Magazzeni, “Counterfactual shapley additive expla-
nations,” in 2022 ACM Conference on Fairness, Accountability, and Transparency, pp. 1054–
1070, 2022.

[80] A. Arnaiz-Rodriguez and N. Oliver, “Towards algorithmic fairness by means of instance-
level data re-weighting based on shapley values,” in ICLR 2024 Workshop on Data-centric
Machine Learning Research (DMLR): Harnessing Momentum for Science, 2024.

78



[81] P. Bedapudi, “NudeNet: Neural Nets for Nudity Classification, Detection, and Selective
Censoring,” 2019.

[82] D. L. Crone, S. Bode, C. Murawski, and S. M. Laham, “The Socio-Moral Image Database
(SMID): A novel stimulus set for the study of social, moral and affective processes,” PloS
one, vol. 13, no. 1, p. e0190954, 2018.

[83] S. Y. Gadre, G. Ilharco, A. Fang, J. Hayase, G. Smyrnis, T. Nguyen, R. Marten, M. Worts-
man, D. Ghosh, J. Zhang, et al., “DataComp: In search of the next generation of multimodal
datasets,” in NeurIPS, 2024.

[84] C. Schuhmann, R. Vencu, R. Beaumont, R. Kaczmarczyk, C. Mullis, A. Katta, T. Coombes,
J. Jitsev, and A. Komatsuzaki, “LAION-400M: Open Dataset of CLIP-Filtered 400 Million
Image-Text Pairs,” 2021.

[85] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-Resolution Image
Synthesis with Latent Diffusion Models,” in CVPR, 2022.

[86] P. Schramowski, C. Tauchmann, and K. Kersting, “Can Machines Help Us Answering Ques-
tion 16 in Datasheets, and In Turn Reflecting on Inappropriate Content?,” in ACM FAccT,
2022.

[87] D. Caffagni, F. Cocchi, L. Barsellotti, N. Moratelli, S. Sarto, L. Baraldi, L. Baraldi, M. Cornia,
and R. Cucchiara, “The Revolution of Multimodal Large Language Models: A Survey,” in
ACL Findings, 2024.

[88] H. Liu, C. Li, Q. Wu, and Y. J. Lee, “Visual Instruction Tuning,” in NeurIPS, 2023.

[89] S. Poppi, T. Poppi, F. Cocchi, M. Cornia, L. Baraldi, and R. Cucchiara, “Safe-CLIP: Re-
moving NSFW Concepts from Vision-and-Language Models,” in Proceedings of the European
Conference on Computer Vision, 2024.

[90] Y. Zhang, B. Kang, B. Hooi, S. Yan, and J. Feng, “Deep Long-Tailed Learning: A Survey,”
2023.

[91] D. Samuel, R. Ben-Ari, S. Raviv, N. Darshan, and G. Chechik, “Generating images of rare
concepts using pre-trained diffusion models,” in AAAI, 2023.

[92] H. Chefer, Y. Alaluf, Y. Vinker, L. Wolf, and D. Cohen-Or, “Attend-and-Excite: Attention-
Based Semantic Guidance for Text-to-Image Diffusion Models,” ACM Transactions on Graph-
ics (TOG), 2023.

[93] N. Liu, S. Li, Y. Du, A. Torralba, and J. B. Tenenbaum, “Compositional Visual Generation
with Composable Diffusion Models,” in ECCV, 2022.

[94] W. Feng, X. He, T.-J. Fu, V. Jampani, A. R. Akula, P. Narayana, S. Basu, X. E. Wang, and
W. Y. Wang, “Training-Free Structured Diffusion Guidance for Compositional Text-to-Image
Synthesis,” in ICLR, 2023.

[95] A. Helbling, E. Montoya, and D. H. Chau, “ObjectComposer: Consistent Generation of
Multiple Objects Without Fine-tuning,” arXiv preprint arXiv:2310.06968, 2023.

[96] S. Karthik, K. Roth, M. Mancini, and Z. Akata, “If at First You Don’t Succeed, Try,
Try Again: Faithful Diffusion-based Text-to-Image Generation by Selection,” arXiv preprint
arXiv:2305.13308, 2023.

79



[97] D. Samuel, R. Ben-Ari, N. Darshan, H. Maron, and G. Chechik, “Norm-guided latent space
exploration for text-to-image generation,” in NeurIPS, 2024.

[98] Q. Wu, Y. Liu, H. Zhao, T. Bui, Z. Lin, Y. Zhang, and S. Chang, “Harnessing the Spatial-
Temporal Attention of Diffusion Models for High-Fidelity Text-to-Image Synthesis,” in ICCV,
2023.

[99] F. Betti, J. Staiano, L. Baraldi, L. Baraldi, R. Cucchiara, and N. Sebe, “Let’s vice! mimicking
human cognitive behavior in image generation evaluation,” in ACM MM, 2023.

[100] Y. Lu, X. Yang, X. Li, X. E. Wang, and W. Y. Wang, “LLMScore: Unveiling the Power of
Large Language Models in Text-to-Image Synthesis Evaluation,” in NeurIPS, 2024.

[101] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin, “Attention is all you need,” in NeurIPS, pp. 5998–6008, 2017.

[102] N. Liu, S. Li, Y. Du, A. Torralba, and J. B. Tenenbaum, “Compositional Visual Generation
with Composable Diffusion Models,” in ECCV, 2022.

[103] M. Chen, I. Laina, and A. Vedaldi, “Training-Free Layout Control with Cross-Attention
Guidance,” in WACV, 2024.

[104] M. Minderer, A. Gritsenko, and N. Houlsby, “Scaling Open-Vocabulary Object Detection,”
in NeurIPS, 2024.

[105] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L.
Zitnick, “Microsoft coco: Common objects in context,” in ECCV, 2014.

[106] J. Dressel and H. Farid, “The accuracy, fairness, and limits of predicting recidivism,” Science
advances, vol. 4, no. 1, p. eaao5580, 2018.

[107] M. A. Sheikh, A. K. Goel, and T. Kumar, “An approach for prediction of loan approval
using machine learning algorithm,” in 2020 International Conference on Electronics and
Sustainable Communication Systems (ICESC), pp. 490–494, IEEE, 2020.

[108] C. Liem, M. Langer, A. Demetriou, A. M. Hiemstra, A. Sukma Wicaksana, M. P. Born,
and C. J. König, “Psychology meets machine learning: Interdisciplinary perspectives on
algorithmic job candidate screening,” in Explainable and interpretable models in computer
vision and machine learning, pp. 197–253, Springer, 2018.

[109] T. K. Yoo, I. H. Ryu, G. Lee, Y. Kim, J. K. Kim, I. S. Lee, J. S. Kim, and T. H. Rim,
“Adopting machine learning to automatically identify candidate patients for corneal refractive
surgery,” NPJ digital medicine, vol. 2, no. 1, pp. 1–9, 2019.

[110] S. Venkatasubramanian and M. Alfano, “The philosophical basis of algorithmic recourse,” in
Proceedings of the 2020 conference on fairness, accountability, and transparency, pp. 284–293,
2020.

[111] A.-H. Karimi, B. Schölkopf, and I. Valera, “Algorithmic recourse: from counterfactual expla-
nations to interventions,” in Proceedings of the 2021 ACM Conference on Fairness, Account-
ability, and Transparency, pp. 353–362, 2021.

[112] G. De Toni, B. Lepri, and A. Passerini, “Synthesizing explainable counterfactual policies
for algorithmic recourse with program synthesis,” Mach. Learn., vol. 112, p. 1389–1409, feb
2023.

80



[113] P. Naumann and E. Ntoutsi, “Consequence-aware sequential counterfactual generation,” in
Joint European Conference on Machine Learning and Knowledge Discovery in Databases,
pp. 682–698, Springer, 2021.

[114] A.-H. Karimi, G. Barthe, B. Schölkopf, and I. Valera, “A survey of algorithmic recourse:
Contrastive explanations and consequential recommendations,” ACM Comput. Surv., vol. 55,
dec 2022.

[115] G. Ramakrishnan, Y. C. Lee, and A. Albarghouthi, “Synthesizing action sequences for mod-
ifying model decisions,” in AAAI, vol. 34, pp. 5462–5469, 2020.

[116] S. Yonadav and W. S. Moses, “Extracting incentives from black-box decisions,” CoRR,
vol. abs/1910.05664, 2019.

[117] B. Ustun, A. Spangher, and Y. Liu, “Actionable recourse in linear classification,” in FAT*,
pp. 10–19, 2019.

[118] A.-H. Karimi, J. Von Kügelgen, B. Schölkopf, and I. Valera, “Algorithmic recourse under
imperfect causal knowledge: a probabilistic approach,” Advances in Neural Information Pro-
cessing Systems, vol. 33, pp. 265–277, 2020.

[119] S. Tsirtsis and M. Rodriguez, “Decisions, counterfactual explanations and strategic behavior,”
in NeurIPS, 2020.

[120] C. Russell, “Efficient search for diverse coherent explanations,” in Proceedings of the Con-
ference on Fairness, Accountability, and Transparency, FAT* ’19, (New York, NY, USA),
p. 20–28, Association for Computing Machinery, 2019.

[121] R. K. Mothilal, A. Sharma, and C. Tan, “Explaining machine learning classifiers through
diverse counterfactual explanations,” in FAT*, pp. 607–617, 2020.

[122] Z. J. Wang, J. Wortman Vaughan, R. Caruana, and D. H. Chau, “Gam coach: Towards inter-
active and user-centered algorithmic recourse,” in Proceedings of the 2023 CHI Conference
on Human Factors in Computing Systems, pp. 1–20, 2023.

[123] S. Dandl, C. Molnar, M. Binder, and B. Bischl, “Multi-objective counterfactual explanations,”
in PPSN, pp. 448–469, Springer, 2020.

[124] P. Yadav, P. Hase, and M. Bansal, “Low-cost algorithmic recourse for users with uncertain
cost functions,” arXiv preprint arXiv:2111.01235, 2021.

[125] K. Rawal and H. Lakkaraju, “Beyond individualized recourse: Interpretable and interactive
summaries of actionable recourses,” Advances in Neural Information Processing Systems,
vol. 33, pp. 12187–12198, 2020.

[126] D. Mahajan, C. Tan, and A. Sharma, “Preserving causal constraints in counterfactual expla-
nations for machine learning classifiers,” arXiv preprint arXiv:1912.03277, 2019.

[127] U. Chajewska, D. Koller, and R. Parr, “Making rational decisions using adaptive utility
elicitation,” in AAAI/IAAI, pp. 363–369, 2000.

[128] C. Boutilier, “A pomdp formulation of preference elicitation problems,” in AAAI, pp. 239–
246, 2002.

81



[129] D. Braziunas and C. Boutilier, “Minimax regret based elicitation of generalized additive
utilities,” in UAI, pp. 25–32, 2007.

[130] S. Guo and S. Sanner, “Real-time multiattribute bayesian preference elicitation with pairwise
comparison queries,” in AISTATS, pp. 289–296, 2010.

[131] P. Viappiani and C. Boutilier, “Optimal Bayesian recommendation sets and myopically op-
timal choice query sets,” Advances in neural information processing systems, vol. 23, 2010.

[132] P. Dragone, S. Teso, and A. Passerini, “Constructive preference elicitation,” Frontiers in
Robotics and AI, vol. 4, p. 71, 2018.

[133] P. Viappiani and C. Boutilier, “On the equivalence of optimal recommendation sets and
myopically optimal query sets,” Artificial Intelligence, vol. 286, p. 103328, 2020.

[134] R. Price and P. R. Messinger, “Optimal recommendation sets: Covering uncertainty over user
preferences,” in Proceedings, The Twentieth National Conference on Artificial Intelligence
and the Seventeenth Innovative Applications of Artificial Intelligence Conference, July 9-13,
2005, Pittsburgh, Pennsylvania, USA (M. M. Veloso and S. Kambhampati, eds.), pp. 541–548,
AAAI Press / The MIT Press, 2005.

[135] R. Akrour, M. Schoenauer, and M. Sebag, “APRIL: active preference learning-based rein-
forcement learning,” in Machine Learning and Knowledge Discovery in Databases - European
Conference, ECML PKDD 2012, Bristol, UK, September 24-28, 2012. Proceedings, Part II
(P. A. Flach, T. D. Bie, and N. Cristianini, eds.), vol. 7524 of Lecture Notes in Computer
Science, pp. 116–131, Springer, 2012.

[136] R. D. Luce, Individual choice behavior: A theoretical analysis. Courier Corporation, 2012.

[137] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of approximations for maxi-
mizing submodular set functions—i,” Mathematical programming, vol. 14, no. 1, pp. 265–294,
1978.

[138] A. Krause and D. Golovin, “Submodular function maximization.,” Tractability, vol. 3, pp. 71–
104, 2014.

[139] Kaggle, “Give me some credit,” Sep 2011.

[140] D. Dua and C. Graff, “UCI machine learning repository,” 2017.

[141] R. Poyiadzi, K. Sokol, R. Santos-Rodriguez, T. De Bie, and P. Flach, “Face: feasible and
actionable counterfactual explanations,” in Proceedings of the AAAI/ACM Conference on
AI, Ethics, and Society, pp. 344–350, 2020.

[142] J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, T. Pfaff, T. Weber, L. Buesing, and P. W.
Battaglia, “Combining q-learning and search with amortized value estimates,” arXiv preprint
arXiv:1912.02807, 2019.

[143] S. Verma, K. Hines, and J. P. Dickerson, “Amortized generation of sequential algorithmic
recourses for black-box models,” in Proceedings of the AAAI Conference on Artificial Intel-
ligence, vol. 36, pp. 8512–8519, 2022.

[144] S. Verma, V. Boonsanong, M. Hoang, K. E. Hines, J. P. Dickerson, and C. Shah, “Coun-
terfactual explanations and algorithmic recourses for machine learning: A review,” arXiv
preprint arXiv:2010.10596, 2020.

82



[145] S. Wachter, B. Mittelstadt, and C. Russell, “Counterfactual explanations without opening
the black box: Automated decisions and the gdpr,” Harv. JL & Tech., vol. 31, p. 841, 2017.

[146] P. Voigt and A. Von dem Bussche, “The EU general data protection regulation (gdpr),” A
Practical Guide, 1st Ed., Cham: Springer International Publishing, vol. 10, no. 3152676,
pp. 10–5555, 2017.

[147] G. D. Toni, P. Viappiani, S. Teso, B. Lepri, and A. Passerini, “Personalized algorithmic
recourse with preference elicitation,” Transactions on Machine Learning Research, 2024.

[148] S. Esfahani, G. De Toni, B. Lepri, A. Passerini, K. Tentori, and M. Zancanaro, “Preference
elicitation in interactive and user-centered algorithmic recourse: an initial exploration,” in
Proceedings of the 32nd ACM Conference on User Modeling, Adaptation and Personalization,
pp. 249–254, 2024.

[149] E. Ntoutsi, P. Fafalios, U. Gadiraju, V. Iosifidis, W. Nejdl, M.-E. Vidal, S. Ruggieri, F. Turini,
S. Papadopoulos, E. Krasanakis, et al., “Bias in data-driven artificial intelligence systems—an
introductory survey,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discov-
ery, vol. 10, no. 3, p. e1356, 2020.

[150] S. Caton and C. Haas, “Fairness in machine learning: A survey,” ACM Computing Surveys,
vol. 56, no. 7, pp. 1–38, 2024.

[151] M. S. A. Lee and J. Singh, “The landscape and gaps in open source fairness toolkits,” in
Proceedings of the 2021 CHI conference on human factors in computing systems, pp. 1–13,
2021.

[152] R. K. Bellamy, K. Dey, M. Hind, S. C. Hoffman, S. Houde, K. Kannan, P. Lohia, J. Martino,
S. Mehta, A. Mojsilović, et al., “Ai fairness 360: An extensible toolkit for detecting and
mitigating algorithmic bias,” IBM Journal of Research and Development, vol. 63, no. 4/5,
pp. 4–1, 2019.

[153] S. Bird, M. Dudík, R. Edgar, B. Horn, R. Lutz, V. Milan, M. Sameki, H. Wallach, and
K. Walker, “Fairlearn: A toolkit for assessing and improving fairness in ai,” Microsoft, Tech.
Rep. MSR-TR-2020-32, 2020.

[154] L. Cheng, K. R. Varshney, and H. Liu, “Socially responsible ai algorithms: Issues, purposes,
and challenges,” Journal of Artificial Intelligence Research, vol. 71, pp. 1137–1181, 2021.

[155] L. Weinberg, “Rethinking fairness: An interdisciplinary survey of critiques of hegemonic ml
fairness approaches,” Journal of Artificial Intelligence Research, vol. 74, pp. 75–109, 2022.

[156] J. Kleinberg, S. Mullainathan, and M. Raghavan, “Inherent trade-offs in the fair determina-
tion of risk scores,” in 8th Innovations in Theoretical Computer Science, 2017.

[157] E. Krasanakis and S. Papadopoulos, “Evaluating ai group fairness: a fuzzy logic perspective,”
arXiv preprint arXiv:2406.18939, 2024.

[158] L. A. Zadeh, “Fuzzy sets as a basis for a theory of possibility,” Fuzzy sets and systems, vol. 1,
no. 1, pp. 3–28, 1978.

[159] P. Hájek, “Basic fuzzy logic and bl-algebras,” Soft computing, vol. 2, pp. 124–128, 1998.

83



[160] R. Cignoli, F. Esteva, L. Godo, and A. Torrens, “Basic fuzzy logic is the logic of continuous
t-norms and their residua,” Soft computing, vol. 4, pp. 106–112, 2000.

[161] F. Esteva and L. Godo, “Monoidal t-norm based logic: towards a logic for left-continuous
t-norms,” Fuzzy sets and systems, vol. 124, no. 3, pp. 271–288, 2001.

[162] L. Spada and A. Di Nola, “A short introduction to formal fuzzy logic via t-norms,” in Metodi,
Modelli eTecnologie dell’informazione a Supporto delle Decisioni, vol. 1, pp. 194–202, Franco
Angeli, 2008.

[163] P. Cintula, C. G. Fermüller, and C. Noguera, “Fuzzy Logic,” in The Stanford Encyclopedia
of Philosophy (E. N. Zalta and U. Nodelman, eds.), Metaphysics Research Lab, Stanford
University, Summer 2023 ed., 2023.

[164] J. M. Rohrer, “Thinking clearly about correlations and causation: Graphical causal models
for observational data,” Advances in methods and practices in psychological science, vol. 1,
no. 1, pp. 27–42, 2018.

[165] H. M. Blalock Jr, Causal models in the social sciences. Routledge, 2017.

[166] E. P. Klement, R. Mesiar, and E. Pap, Triangular norms, vol. 8. Springer Science & Business
Media, 2013.

[167] J. R. Foulds, R. Islam, K. N. Keya, and S. Pan, “An intersectional definition of fairness,”
in 2020 IEEE 36th International Conference on Data Engineering (ICDE), pp. 1918–1921,
IEEE, 2020.

[168] D. Biddle, Adverse impact and test validation: A practitioner’s guide to valid and defensible
employment testing. Routledge, 2017.

[169] T. Calders and S. Verwer, “Three naive bayes approaches for discrimination-free classifica-
tion,” Data mining and knowledge discovery, vol. 21, pp. 277–292, 2010.

[170] D. Kahneman and A. Tversky, “Prospect theory: An analysis of decision under risk,” Econo-
metrica, vol. 47, p. 263, Mar. 1979.

[171] H. A. Simon, “A Behavioral Model of Rational Choice,” The Quarterly Journal of Economics,
vol. 69, pp. 99–118, 02 1955.

[172] D. Kahneman, Thinking, fast and slow. Macmillan, 2011.

[173] D. Ariely and S. Jones, Predictably irrational. 2008.

[174] N. D. Schüll, Addiction by design. Princeton University Press, 2012.

[175] N. Eyal, Hooked: How to build habit-forming products. Penguin, 2014.

[176] M. Petticrew, N. Maani, L. Pettigrew, H. Rutter, and M. C. Van Schalkwyk, “Dark nudges
and sludge in big alcohol: Behavioral economics, cognitive biases, and alcohol industry cor-
porate social responsibility,” The Milbank Quarterly, vol. 98, pp. 1290–1328, Sept. 2020.

[177] L. M. Hiatt, C. Narber, E. Bekele, S. S. Khemlani, and J. G. Trafton, “Human modeling for
human–robot collaboration,” The International Journal of Robotics Research, Feb. 2017.

84



[178] A. S. Rich and T. M. Gureckis, “Lessons for artificial intelligence from the study of natural
stupidity,” Nature Machine Intelligence, vol. 1, no. 4, pp. 174–180, 2019.

[179] C. Rastogi, Y. Zhang, D. Wei, K. R. Varshney, A. Dhurandhar, and R. Tomsett, “Deciding
fast and slow: The role of cognitive biases in ai-assisted decision-making,” 2020.

[180] T. Kliegr, Š. Bahník, and J. Fürnkranz, “A review of possible effects of cognitive biases on
interpretation of rule-based machine learning models,” Artificial Intelligence, vol. 295, June
2021.

[181] J. S. Blumenthal-Barby and H. Krieger, “Cognitive biases and heuristics in medical decision
making,” Medical Decision Making, vol. 35, pp. 539–557, Aug. 2014.

[182] G. Saposnik, D. Redelmeier, C. C. Ruff, et al., “Cognitive biases associated with medical
decisions: a systematic review,” BMC Medical Informatics and Decision Making, Nov. 2016.

[183] W. Wattanacharoensil and D. La-ornual, “A systematic review of cognitive biases in tourist
decisions,” Tourism Management, vol. 75, pp. 353–369, Dec. 2019.

[184] M. J. Kinsey, S. M. V. Gwynne, E. D. Kuligowski, and M. Kinateder, “Cognitive biases
within decision making during fire evacuations,” Fire Technology, vol. 55, pp. 465–485, Mar.
2018.

[185] E. Dimara, S. Franconeri, C. Plaisant, A. Bezerianos, and P. Dragicevic, “A task-based tax-
onomy of cognitive biases for information visualization,” IEEE Transactions on Visualization
and Computer Graphics, vol. 26, pp. 1413–1432, Feb. 2020.

[186] A. Tversky and D. Kahneman, “Judgment under uncertainty: Heuristics and biases: Biases in
judgments reveal some heuristics of thinking under uncertainty.,” Science, vol. 185, p. 1124–
1131, Sept. 1974.

[187] K. E. Stanovich, M. E. Toplak, and R. F. West, “The development of rational thought: A
taxonomy of heuristics and biases,” in Advances in Child Development and Behavior, pp. 251–
285, Elsevier, 2008.

[188] D. Arnott, “Cognitive biases and decision support systems development: a design science
approach,” Information Systems Journal, vol. 16, Jan. 2006.

[189] R. Pohl and R. F. Pohl, Cognitive illusions: A handbook on fallacies and biases in thinking,
judgement and memory. Psychology Press, 2004.

[190] J. Huber, J. W. Payne, and C. Puto, “Adding asymmetrically dominated alternatives: Vi-
olations of regularity and the similarity hypothesis,” Journal of Consumer Research, vol. 9,
p. 90, June 1982.

[191] J. Hu and R. Yu, “The neural correlates of the decoy effect in decisions,” Frontiers in Be-
havioral Neuroscience, vol. 8, Aug. 2014.

[192] Z. Wang, M. Jusup, L. Shi, et al., “Exploiting a cognitive bias promotes cooperation in social
dilemma experiments,” Nature Communications, vol. 9, July 2018.

[193] B. M. Josiam and J. P. Hobson, “Consumer choice in context: The decoy effect in travel and
tourism,” Journal of Travel Research, vol. 34, pp. 45–50, July 1995.

85



[194] E. C. Teppan and A. Felfernig, “Minimization of decoy effects in recommender result sets,”
Web Intelligence and Agent Systems: An International Journal, vol. 10, no. 4, pp. 385–395,
2012.

[195] A. Tversky and D. Kahneman, “The framing of decisions and the psychology of choice,”
Science, vol. 211, no. 4481, 1981.

[196] S. Gächter, H. Orzen, E. Renner, and C. Starmer, “Are experimental economists prone to
framing effects? a natural field experiment,” Journal of Economic Behavior & Organization,
vol. 70, pp. 443–446, June 2009.

[197] I. P. Levin, S. L. Schneider, and G. J. Gaeth, “All frames are not created equal: A typol-
ogy and critical analysis of framing effects,” Organizational Behavior and Human Decision
Processes, vol. 76, pp. 149–188, Nov. 1998.

[198] J. Gong, Y. Zhang, Z. Yang, Y. Huang, J. Feng, and W. Zhang, “The framing effect in
medical decision-making: a review of the literature,” Psychology, Health & Medicine, vol. 18,
pp. 645–653, Dec. 2013.

[199] P. E. Souza, C. P. C. Chanel, F. Dehais, and S. Givigi, “Towards human-robot interaction:
A framing effect experiment,” in 2016 IEEE International Conference on Systems, Man, and
Cybernetics (SMC), pp. 001929–001934, IEEE, Oct. 2016.

[200] T. Kim and H. Song, “Communicating the limitations of AI: The effect of message framing
and ownership on trust in artificial intelligence,” International Journal of Human–Computer
Interaction, pp. 1–11, Apr. 2022.

[201] F. Ni, D. Arnott, and S. Gao, “The anchoring effect in business intelligence supported
decision-making,” Journal of Decision Systems, vol. 28, pp. 67–81, Apr. 2019.

[202] T. Yasseri and J. Reher, “Fooled by facts: quantifying anchoring bias through a large-scale
experiment,” Journal of Computational Social Science, vol. 5, pp. 1001–1021, Jan. 2022.

[203] G. Adomavicius, J. C. Bockstedt, S. P. Curley, and J. Zhang, “Do recommender systems
manipulate consumer preferences? a study of anchoring effects,” Inf. Syst. Res., Dec. 2013.

[204] B. K. Hayes and B. R. Newell, “Induction with uncertain categories: When do people consider
the category alternatives?,” Memory & Cognition, vol. 37, pp. 730–743, Sept. 2009.

[205] D. V. Burakov, “Exogenous credit cycle: An experimental study,” World Applied Sciences
Journal, vol. 26, no. 6, 2013.

[206] A. Tversky and D. Kahneman, “Extensional versus intuitive reasoning: The conjunction
fallacy in probability judgment.,” Psychological Review, vol. 90, no. 4, pp. 293–315, 1983.

[207] K. Tentori, N. Bonini, and D. Osherson, “The conjunction fallacy: a misunderstanding about
conjunction?,” Cognitive Science, vol. 28, pp. 467–477, May 2004.

[208] D. H. Wedell and R. Moro, “Testing boundary conditions for the conjunction fallacy: Effects
of response mode, conceptual focus, and problem type,” Cognition, vol. 107, Apr. 2008.

[209] Y. Lo, A. Sides, J. Rozelle, and D. Osherson, “Evidential diversity and premise probability
in young children's inductive judgment,” Cognitive Science, vol. 26, pp. 181–206, Mar. 2002.

86



[210] A. K. Barbey and S. A. Sloman, “Base-rate respect: From ecological rationality to dual
processes,” Behavioral and Brain Sciences, vol. 30, pp. 241–254, June 2007.

[211] M. Bar-Hillel, “The base-rate fallacy in probability judgments,” Acta Psychologica, vol. 44,
pp. 211–233, May 1980.

[212] E. Gold, The gambler’s fallacy. PhD thesis, Carnegie Mellon University, 1997.

[213] G. Barron and S. Leider, “The role of experience in the gambler's fallacy,” Journal of Be-
havioral Decision Making, vol. 23, pp. 117–129, Jan. 2010.

[214] D. L. Chen, T. J. Moskowitz, and K. Shue, “Decision making under the gambler’s fallacy:
Evidence from asylum judges, loan officers, and baseball umpires,” The Quarterly Journal
of Economics, vol. 131, pp. 1181–1242, Mar. 2016.

[215] R. Thaler, “Some empirical evidence on dynamic inconsistency,” Economics Letters, vol. 8,
pp. 201–207, Jan. 1981.

[216] W. H. Hampton, N. Asadi, and I. R. Olson, “Good things for those who wait: Predictive
modeling highlights importance of delay discounting for income attainment,” Frontiers in
Psychology, vol. 9, Sept. 2018.

[217] G. Ainslie, “Specious reward: A behavioral theory of impulsiveness and impulse control.,”
Psychological Bulletin, 1975.

[218] C. F. Kurz and A. N. König, “Predicting time preference from social media behavior,” Future
Generation Computer Systems, vol. 130, pp. 155–163, May 2022.

[219] T. S. van Endert and P. N. C. Mohr, “Delay discounting of monetary and social media
rewards: Magnitude and trait effects,” Frontiers in Psychology, vol. 13, Feb. 2022.

[220] K. Dion, E. Berscheid, and E. Walster, “What is beautiful is good.,” Journal of Personality
and Social Psychology, vol. 24, no. 3, pp. 285–290, 1972.

[221] R. E. Nisbett and T. D. Wilson, “The halo effect: Evidence for unconscious alteration of
judgments.,” Journal of Personality and Social Psychology, vol. 35, pp. 250–256, Apr. 1977.

[222] J. L. Gibson and J. S. Gore, “Is he a hero or a weirdo? how norm violations influence the
halo effect,” Gender Issues, vol. 33, pp. 299–310, Sept. 2016.

[223] D. Landy and H. Sigall, “Beauty is talent: Task evaluation as a function of the performer's
physical attractiveness.,” Journal of Personality and Social Psychology, vol. 29, no. 3, 1974.

[224] M. I. Norton, D. Mochon, and D. Ariely, “The IKEA effect: When labor leads to love,”
Journal of Consumer Psychology, vol. 22, pp. 453–460, July 2012.

[225] T. Radtke, N. Liszewska, K. Horodyska, M. Boberska, K. Schenkel, and A. Luszczynska,
“Cooking together: The ikea effect on family vegetable intake,” British Journal of Health
Psychology, vol. 24, pp. 896–912, Sept. 2019.

[226] F. Brunner, F. Gamm, and W. Mill, “MyPortfolio: The IKEA effect in financial investment
decisions,” Journal of Banking & Finance, p. 106529, May 2022.

[227] J. W. Pratt, “Risk aversion in the small and in the large,” in Uncertainty in Economics,
pp. 59–79, Elsevier, 1978.

87



[228] K. E. Stanovich, Decision making and rationality in the modern world. New York, Oxford
University Press, 2010.

[229] B. Fischhoff, P. Slovic, S. Lichtenstein, et al., “How safe is safe enough? a psychometric
study of attitudes towards technological risks and benefits,” Policy Sciences, Apr. 1978.

[230] Y. Rottenstreich and C. K. Hsee, “Money, kisses, and electric shocks: On the affective
psychology of risk,” Psychological Science, vol. 12, pp. 185–190, May 2001.

[231] D. P. Crowne and D. Marlowe, “A new scale of social desirability independent of psy-
chopathology.,” Journal of Consulting Psychology, vol. 24, no. 4, pp. 349–354, 1960.

[232] J. R. Hebert, L. Clemow, L. Pbert, I. S. Ockene, and J. K. Ockene, “Social desirability bias
in dietary self-report may compromise the validity of dietary intake measures,” International
Journal of Epidemiology, vol. 24, no. 2, 1995.

[233] L. Harrison, “The validity of self-reported drug use in survey research: An overview and
critique of research methods. national institute of drug abuse monograph 167,” 2006.

[234] G. S. Stuart and D. A. Grimes, “Social desirability bias in family planning studies: a neglected
problem,” Contraception, vol. 80, pp. 108–112, Aug. 2009.

[235] E. F. Loftus and J. C. Palmer, “Reconstruction of automobile destruction: An example of the
interaction between language and memory,” Journal of Verbal Learning and Verbal Behavior,
vol. 13, pp. 585–589, Oct. 1974.

[236] E. F. Loftus, “Reconstructing memory: The incredible eyewitness,” Jurimetrics Journal,
vol. 15, no. 3, pp. 188–193, 1975.

[237] J. M. Lampinen, J. S. Neuschatz, and D. G. Payne, “Memory illusions and consciousness:
Examining the phenomenology of true and false memories,” Current Psychology, vol. 16,
pp. 181–224, Sept. 1997.

[238] D. M. Bernstein and E. F. Loftus, “The consequences of false memories for food preferences
and choices,” Perspectives on Psychological Science, vol. 4, pp. 135–139, Mar. 2009.

[239] T. B. Rogers, N. A. Kuiper, and W. S. Kirker, “Self-reference and the encoding of personal
information.,” Journal of Personality and Social Psychology, vol. 35, no. 9, pp. 677–688, 1977.

[240] A. H. Gutchess, E. A. Kensinger, C. Yoon, and D. L. Schacter, “Ageing and the self-reference
effect in memory,” Memory, vol. 15, pp. 822–837, Nov. 2007.

[241] B. B. Murdock, “The serial position effect of free recall.,” Journal of Experimental Psychology,
vol. 64, pp. 482–488, Nov. 1962.

[242] B. Murdock and J. Metcalfe, “Controlled rehearsal in single-trial free recall,” Journal of
Verbal Learning and Verbal Behavior, vol. 17, pp. 309–324, June 1978.

[243] S. E. Asch, “Forming impressions of personality.,” The Journal of Abnormal and Social
Psychology, vol. 41, July 1946.

[244] D. Kahneman, B. L. Fredrickson, C. A. Schreiber, and D. A. Redelmeier, “When more pain
is preferred to less: Adding a better end,” Psychological Science, vol. 4, pp. 401–405, Nov.
1993.

88



[245] Z. Carmon and D. Kahneman, “The experienced utility of queuing: real time affect and
retrospective evaluations of simulated queues,” Duke University: Durham, NC, USA, 1996.

[246] P. De Maeyer and H. Estelami, “Applying the peak-end rule to reference prices,” Journal of
Product & Brand Management, 2013.

[247] W. Samuelson and R. Zeckhauser, “Status quo bias in decision making,” Journal of Risk and
Uncertainty, vol. 1, Mar. 1988.

[248] D. Kahneman, J. L. Knetsch, and R. H. Thaler, “Anomalies: The endowment effect, loss
aversion, and status quo bias,” Journal of Economic Perspectives, vol. 5, Feb. 1991.

[249] D. R. Forsyth, “Group dynamics,” 1990.

[250] T. Postmes, R. Spears, and S. Cihangir, “Quality of decision making and group norms.,”
Journal of Personality and Social Psychology, vol. 80, no. 6, pp. 918–930, 2001.

[251] G. Stasser and D. Stewart, “Discovery of hidden profiles by decision-making groups: Solving
a problem versus making a judgment.,” Journal of Personality and Social Psychology, vol. 63,
pp. 426–434, Sept. 1992.

[252] I. Simonson, “The effect of purchase quantity and timing on variety-seeking behavior,” Jour-
nal of Marketing Research, vol. 27, p. 150, May 1990.

[253] D. Read and G. Loewenstein, “Diversification bias: Explaining the discrepancy in variety
seeking between combined and separated choices.,” Journal of Experimental Psychology: Ap-
plied, vol. 1, pp. 34–49, Mar. 1995.

[254] D. Kliger, M. J. van den Assem, and R. C. Zwinkels, “Empirical behavioral finance,” Journal
of Economic Behavior & Organization, vol. 107, pp. 421–427, Nov. 2014.

[255] G. Gigerenzer and D. G. Goldstein, “Reasoning the fast and frugal way: Models of bounded
rationality.,” Psychological Review, vol. 103, pp. 650–669, Oct. 1996.

[256] Y. Wang, S. Luan, and G. Gigerenzer, “Modeling fast-and-frugal heuristics,” PsyCh Journal,
vol. 11, pp. 600–611, July 2022.

[257] C. A. Hidalgo et al., How humans judge machines. MIT Press, 2021.

[258] H. Taniguchi, H. Sato, and T. Shirakawa, “Application of human cognitive mechanisms to
naïve bayes text classifier,” AIP Conference Proceedings, vol. 1863, no. 1, p. 360016, 2017.

[259] H. Taniguchi, H. Sato, and T. Shirakawa, “Implementation of human cognitive bias on
neural network and its application to breast cancer diagnosis,” SICE Journal of Control,
Measurement, and System Integration, vol. 12, Mar. 2019.

[260] M. Sidman, R. Rauzin, R. Lazar, S. Cunningham, W. Tailby, and P. Carrigan, “A search
for symmetry in the conditional discriminations of rhesus monkeys, baboons, and children,”
Journal of the Experimental Analysis of Behavior, vol. 37, pp. 23–44, Jan. 1982.

[261] W. E. Merriman, L. L. Bowman, and B. MacWhinney, “The mutual exclusivity bias in
children's word learning,” Monographs of the Society for Research in Child Development,
vol. 54, no. 3/4, p. i, 1989.

89



[262] R. S. Crowley, E. Legowski, O. Medvedeva, et al., “Automated detection of heuristics and
biases among pathologists in a computer-based system,” Advances in Health Sciences Edu-
cation, vol. 18, pp. 343–363, May 2012.

[263] M. McShane, S. Nirenburg, and B. Jarrell, “Modeling decision-making biases,” Biologically
Inspired Cognitive Architectures, vol. 3, pp. 39–50, Jan. 2013.

[264] N. J. Blunch, “Position bias in multiple-choice questions,” Journal of Marketing Research,
vol. 21, pp. 216–220, May 1984.

[265] J.-H. Kang and K. Lerman, “VIP: Incorporating human cognitive biases in a probabilistic
model of retweeting,” in Social Computing, Behavioral-Cultural Modeling, and Prediction,
pp. 101–110, Springer International Publishing, 2015.

[266] J. Tenenbaum, “Bayesian modeling of human concept learning,” Advances in neural infor-
mation processing systems, vol. 11, 1998.

[267] T. L. Griffiths and J. B. Tenenbaum, “Optimal predictions in everyday cognition,” Psycho-
logical Science, vol. 17, Sept. 2006.

[268] N. Chater, J. B. Tenenbaum, and A. Yuille, “Probabilistic models of cognition: Conceptual
foundations,” Trends in Cognitive Sciences, vol. 10, pp. 287–291, July 2006.

[269] R. A. Jansen, A. N. Rafferty, and T. L. Griffiths, “A rational model of the dunning–kruger
effect supports insensitivity to evidence in low performers,” Nature Human Behaviour, vol. 5,
pp. 756–763, Feb. 2021.

[270] A. Gulati, M. A. Lozano, B. Lepri, and N. Oliver, “Biased: Bringing irrationality into auto-
mated system design,” 2023.

[271] S. N. Talamas, Perceptions of intelligence and the attractiveness halo. PhD thesis, University
of St Andrews, 2016.

[272] G. Perrotta, “The concept of altered perception in “body dysmorphic disorder”: the subtle
border between the abuse of selfies in social networks and cosmetic surgery, between socially
accepted dysfunctionality and the pathological condition,” Journal of Neurology, Neurological
Science and Disorders, vol. 6, no. 1, pp. 001–007, 2020.

[273] R. T. Cristel, S. H. Dayan, M. Akinosun, and P. T. Russell, “Evaluation of selfies and filtered
selfies and effects on first impressions,” Aesthetic Surgery Journal, vol. 41, no. 1, pp. 122–130,
2021.

[274] P. Riccio, B. Psomas, F. Galati, F. Escolano, T. Hofmann, and N. Oliver, “Openfilter: a
framework to democratize research access to social media ar filters,” Advances in Neural
Information Processing Systems, vol. 35, pp. 12491–12503, 2022.

[275] P. Riccio and N. Oliver, “Racial bias in the beautyverse: Evaluation of augmented-reality
beauty filters,” in European Conference on Computer Vision, pp. 714–721, Springer, 2022.

[276] D. S. Ma, J. Correll, and B. Wittenbrink, “The chicago face database: A free stimulus set of
faces and norming data,” Behavior Research Methods, vol. 47, pp. 1122–1135, Jan. 2015.

[277] N. C. Ebner, M. Riediger, and U. Lindenberger, “FACES—a database of facial expressions
in young, middle-aged, and older women and men: Development and validation,” Behavior
Research Methods, vol. 42, pp. 351–362, Feb. 2010.

90



[278] R. Barocas and P. Karoly, “Effects of physical appearance on social responsiveness,” Psy-
chological Reports, vol. 31, pp. 495–500, Oct. 1972.

[279] C. Batres and V. Shiramizu, “Examining the “attractiveness halo effect” across cultures,”
Current Psychology, Aug. 2022.

[280] B. J. Guise, C. H. Pollans, and I. D. Turkat, “Effects of physical attractiveness on perception
of social skill,” Perceptual and Motor Skills, vol. 54, pp. 1039–1042, June 1982.

[281] J. R. Kunst, J. Kirkøen, and O. Mohamdain, “Hacking attractiveness biases in hiring? the
role of beautifying photo-filters,” Management Decision, vol. 61, pp. 924–943, Apr. 2022.

[282] K. N. Lewis and W. B. Walsh, “Physical attractiveness: Its impact on the perception of a
female counselor.,” Journal of Counseling Psychology, vol. 25, pp. 210–216, May 1978.

[283] U. M. Marcinkowska, M. V. Kozlov, H. Cai, J. Contreras-Garduño, B. J. Dixson, G. A.
Oana, G. Kaminski, N. P. Li, M. T. Lyons, I. E. Onyishi, et al., “Cross-cultural variation
in men’s preference for sexual dimorphism in women’s faces,” Biology letters, vol. 10, no. 4,
p. 20130850, 2014.

[284] P. C. Wason, “On the failure to eliminate hypotheses in a conceptual task,” Quarterly Journal
of Experimental Psychology, vol. 12, pp. 129 – 140, 1960.

[285] G. Leban, B. Fortuna, J. Brank, and M. Grobelnik, “Event registry: learning about world
events from news,” in Proceedings of the 23rd International Conference on World Wide
Web, WWW ’14 Companion, (New York, NY, USA), p. 107–110, Association for Computing
Machinery, 2014.

[286] A. O. Vladimir Alexiev, Boyan Bechev, “The innograph artificial intelligence taxonomy,
white paper.” online: https://www.ontotext.com/blog/the-innograph-artificial-intelligence-
taxonomy/, 12 2023.

[287] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-
efficient learning of deep networks from decentralized data,” in Artificial intelligence and
statistics, pp. 1273–1282, PMLR, 2017.

[288] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that exploit confidence
information and basic countermeasures,” in Proceedings of the 22nd ACM SIGSAC conference
on computer and communications security, pp. 1322–1333, 2015.

[289] N. Carlini, C. Liu, Ú. Erlingsson, J. Kos, and D. Song, “The secret sharer: Evaluating
and testing unintended memorization in neural networks.,” in USENIX Security Symposium,
vol. 267, 2019.

[290] S. Yeom, I. Giacomelli, M. Fredrikson, and S. Jha, “Privacy risk in machine learning: An-
alyzing the connection to overfitting,” in 2018 IEEE 31st computer security foundations
symposium (CSF), pp. 268–282, IEEE, 2018.

[291] D. Li and J. Wang, “Fedmd: Heterogenous federated learning via model distillation,” in
NeurIPS Workshop on Federated Learning for Data Privacy and Confidentiality, 2019.

[292] C. Yun-Hin, J. Zhihan, D. Jing, and N. C.-H. Edith, “Fedin: Federated intermediate layers
learning for model heterogeneity,” arXiv preprint arXiv:2304.00759, 2023.

91



[293] S. Caldas, J. Konečny, H. B. McMahan, and A. Talwalkar, “Expanding the reach of federated
learning by reducing client resource requirements,” arXiv preprint arXiv:1812.07210, 2018.

[294] E. Diao, J. Ding, and V. Tarokh, “Hetero{fl}: Computation and communication efficient
federated learning for heterogeneous clients,” in International Conference on Learning Rep-
resentations, 2021.

[295] Y. Gu, Y. Bai, and S. Xu, “Cs-mia: Membership inference attack based on prediction confi-
dence series in federated learning,” Journal of Information Security and Applications, vol. 67,
p. 103201, 2022.

[296] D. Bernau, J. Robl, P. W. Grassal, S. Schneider, and F. Kerschbaum, “Comparing local and
central differential privacy using membership inference attacks,” in Data and Applications
Security and Privacy XXXV: 35th Annual IFIP WG 11.3 Conference, DBSec 2021, Calgary,
Canada, July 19–20, 2021, Proceedings, pp. 22–42, Springer, 2021.

[297] Y. Kaya and T. Dumitras, “When does data augmentation help with membership inference
attacks?,” in Proceedings of the 38th International Conference on Machine Learning (M. Meila
and T. Zhang, eds.), vol. 139 of Proceedings of Machine Learning Research, pp. 5345–5355,
PMLR, 18–24 Jul 2021.

[298] M. Shin, C. Hwang, J. Kim, J. Park, M. Bennis, and S.-L. Kim, “Xor mixup:
Privacy-preserving data augmentation for one-shot federated learning,” arXiv preprint
arXiv:2006.05148, 2020.

[299] N. Homer, S. Szelinger, M. Redman, D. Duggan, W. Tembe, J. Muehling, J. V. Pearson,
D. A. Stephan, S. F. Nelson, and D. W. Craig, “Resolving individuals contributing trace
amounts of dna to highly complex mixtures using high-density snp genotyping microarrays,”
PLOS Genetics, vol. 4, pp. 1–9, 08 2008.

[300] A. Oprea and A. Vassilev, “Adversarial machine learning: A taxonomy and terminology of
attacks and mitigations,” tech. rep., National Institute of Standards and Technology US
Department of Commerce, 2023.

[301] B. Jayaraman, L. Wang, K. Knipmeyer, Q. Gu, and D. Evans, “Revisiting membership infer-
ence under realistic assumptions,” Proceedings on Privacy Enhancing Technologies, vol. 2021,
no. 2, 2021.

[302] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership inference attacks against
machine learning models,” in 2017 IEEE symposium on security and privacy (SP), pp. 3–18,
IEEE, 2017.

[303] L. Song, R. Shokri, and P. Mittal, “Membership inference attacks against adversarially robust
deep learning models,” in 2019 IEEE Security and Privacy Workshops (SPW), pp. 50–56,
IEEE, 2019.

[304] G. D. Németh, M. A. Lozano, N. Quadrianto, and N. M. Oliver, “A snapshot of the frontiers
of client selection in federated learning,” Transactions on Machine Learning Research, 2022.

[305] N. Carlini, S. Chien, M. Nasr, S. Song, A. Terzis, and F. Tramer, “Membership inference at-
tacks from first principles,” in 2022 IEEE Symposium on Security and Privacy (SP), pp. 1897–
1914, IEEE, 2022.

92



[306] Y. Liu, Z. Zhao, M. Backes, and Y. Zhang, “Membership inference attacks by exploiting
loss trajectory,” in Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, pp. 2085–2098, 2022.

[307] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a
simple way to prevent neural networks from overfitting,” The journal of machine learning
research, vol. 15, no. 1, pp. 1929–1958, 2014.

[308] Z. Li, L. Wang, G. Chen, Z. Zhang, M. Shafiq, and Z. Gu, “E2egi: End-to-end gradient
inversion in federated learning,” IEEE Journal of Biomedical and Health Informatics, 2022.

[309] C. Zhang, Z. Xiaoman, E. Sotthiwat, Y. Xu, P. Liu, L. Zhen, and Y. Liu, “Generative
gradient inversion via over-parameterized networks in federated learning,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 5126–5135, 2023.

[310] H. Hu, Z. Salcic, L. Sun, G. Dobbie, P. S. Yu, and X. Zhang, “Membership inference attacks
on machine learning: A survey,” ACM Computing Surveys (CSUR), vol. 54, no. 11s, pp. 1–37,
2022.

[311] G. D. Németh, M. Á. Lozano, N. Quadrianto, and N. Oliver, “Addressing membership infer-
ence attack in federated learning with model compression,” arXiv preprint arXiv:2311.17750,
2023.

93


	Executive Summary
	Introduction
	T3.2 Fairness and Counterfactual Interventions.
	Bias Mitigation in Multimodal Systems
	Introduction and Methodology
	Experiments
	Conclusion
	Relevant Publications
	Relevant Software/Datasets/Other Outcomes

	FairShap: Group Fairness via Shapley Values
	Introduction and Methodology
	Experiments and Results
	Conclusion
	Relevant Publications
	Relevant Software and/or External Resources

	Fairness for Toxicity Removal
	Introduction and Methodology
	Experiments and Results
	Conclusion
	Relevant Publications
	Relevant Software and/or External Resources

	Hallucination Early Detection in Diffusion Models
	Introduction and Methodology
	Experiments and Results
	Conclusion

	Personalized Algorithmic Recourse
	Introduction and Methodology
	The PEAR Algorithm
	Experiments and Results
	Conclusion
	Relevant Publications
	Relevant Software and/or External Resources

	Quantifying Fairness with Fuzzy Logic
	Introduction and Methodology
	Interdisciplinary Collaboration
	Learning to Replicate Stakeholder Beliefs
	Conclusion
	Relevant Preprints


	T3.3 Cognition-aware hybrid decision-making systems
	Human Cognitive Biases and AI systems
	A Taxonomy of Cognitive Biases
	Cognitive Biases and AI: Research Directions
	Relevant Publications

	Halo Effect in AI-Driven Beauty Filters
	Introduction and Methodology
	Methodology
	Main Findings
	Conclusion
	Relevant Publications
	Relevant Software and/or External Resources

	Detection of Cognitive Biases in Global News
	Introduction and Methodology
	Experiments and Results
	Conclusion
	Relevant Publications


	T3.4 Privacy-Preserving Machine Learning
	Model-Agnostic Federated Learning with a Privacy Perspective
	Introduction and Methodology
	A Taxonomy of Channel Selection Algorithms
	Experiments and Results
	Conclusion
	Relevant Publications


	Ongoing Work and Conclusions

