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1 Executive Summary
This document reports research outcomes for Work Package 1 of the European Lighthouse of AI for
Sustainability (ELiAS). The focus in this work package is on the development of AI methodology
for (1) monitoring and forecasting of climate and ecology, as well as (2) development of technologies
that make more efficient use of energy and materials, place a lower burden on the ecosystem, and
are compatible with a long-term sustainable economic growth.

This interim report summarizes scientific output during the first 12 months of the project.
We are happy to report that research efforts at partnering organizations are well under way and
continuing to gain momentum. This is evident from the range of results that we present in this de-
liverable, which comprise contributions from 7 project partners. This document comprises sections
on 5 distinct tasks.

Task 1.1: Use Case Requirements and Definition (lead: MPG). This task focuses on
the definition and setting up the three use cases that are associated with WP1, which are intended
to demonstrate serve as a test-bed for new AI technologies towards a sustainable planet. The wide
scope of WP1’s use cases carries a large diversity both related to data characteristics as well as to
modelling approaches and frameworks. As such, the challenges pertain much to the particularities
of each use case and to bridging them across teams to maximize collaboration.

In this task, the three different use cases are: UC1, AI for Building Optimization (team: RB,
RBHU), which works towards the development of AI methods for optimization of energy usage;
UC5, AI for Forecasting Vegetation State (team: MPG, UVEG, UCPH, UPB), which focuses on
utilizing AI to predict the effects of climate extremes on terrestrial ecosystems using remote sensing
and in-situ data; andUC6, Open Materials Discovery Competition (team: UvA, MPG), which will
implement a competition on AI methods for materials discovery.

In this report, we summarize the progress on the development of dataset relating to energy
usage in buildings (UC1). We further report on the active ongoing collaboration between partners
working in UC5, as well as on the results of an initial publication and related software release
(UC5). We further describe the initial stages for organizing the competition on AI methods for
materials discovery, which will involve partnering with a several organizations outside of the ELiAS
project, as well as participants in the project (UC6).

Task 1.2: AI for Accelerating the Design of Sustainable Technologies (lead: UvA).
This task focuses on the development of AI methods for design problems. This involves inverse
reasoning to determine the design parameters of a system, which is often difficult to model that
achieve the desired characteristics. A particular class of design problems that are of specific interest
are materials design problems, which are relevant to the development of a range of sustainable
technologies, including materials for energy storage and carbon capture.

This task is closely connected to Task 1.3, which focuses on data-driven modeling of physical
systems, as well as Task 1.4, which focuses on the development of methods for fast approximate
computation. The reason for this is that data-driven and computationally efficient models are
often a pre-requisite for solving any design problem, since solving such a problem requires compu-
tationally screening a large set of candidate designs.

In this report, we summarize contributions from the JSI on the development ML methods
for materials design based on semi-supervised classification, multi-target regression, and multi-
objective optimization. As part of Task 1.4, we additionally report contributions from the UvA on
fast approximate methods for modeling materials, with the eventual intended use case of screening
metal-organic frameworks for carbon capture applications.
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Task 1.3: AI for Data-driven Modelling of Physical Systems (lead: UVEG). This task
focuses on the use of AI to develop models for physical systems that can be learned from data.
Simulation-based approaches, often formulated in terms of differential equations, have historically
formed the backbone of predictive modelling in science and engineering. Unfortunately, in many
problems related to modeling physical systems, including our climate, we lack knowledge of key pa-
rameters, or lack even a detailed model of the underlying dynamics (e.g., when modelling feedback
loops in climate science). Work in this task addresses this limitation by developing hybrid models,
which can incorporate partial knowledge of a physical systems, whilst also defining a flexible class
of models that can be tuned in a data-driven manner.

In this report, we present contributions from UVEG on the development of explainable em-
ulators for atmospheric radiative transfer models, contributions from IIT on learning dynamical
systems from data via Koopman/Transfer operators, and initial work from UPB towards sustain-
able medical AI technologies.

Task 1.4: AI for Fast Approximation of Scientific Computations (lead: JSI). This
task focuses on the development of AI-based methods that can provide fast approximations to
numerically intensive scientific calculations. A fundamental challenge in the application of AI
to both climate modeling and the design of new technologies is that we are often not able to
simulate systems at the scale that is needed. In climate modelling, one must resolve all physical
processes and complex land-atmosphere-ocean interactions in 3D grid data. Likewise, materials
design problems often require computations in statistical physics or quantum chemistry, e.g., those
based on density functional theory, which often need to be repeated for many candidate materials.

In this report, we present work from the UvA on neural methods for classical density functional
theory, which can be used to perform calculations in mesoscopic systems that are orders of magni-
tude faster than equivalent calculations based on Monte Carlo or molecular dynamics. This work
is a first step towards new methods for materials design (Task 1.2), by providing a fast method for
screening candidate materials. A second contribution related to this topic comes from JSI, which
reports methods for estimating the energy of bismuth atom configurations by learning force fields
using machine learning methods.

Task 1.5: Reducing the Energy Requirements of Computation (lead IPP). This task
focuses on lowering the energy costs associated with computations in AI. This work addresses a
growing demand for more frugal approaches to AI, which in recent years has seen a rapid rise in
requirements for computing, which has in turn given rise to energy requirements and associated
emissions. Paths towards addressing these challenges include training models with less data, hereby
reducing the computational demands during training, and using distillation techniques to learn
smaller models from bigger models, hereby reducing the computation and energy requirements
during deployment.

In this report, we present work from IPP on both low-rank approaches to structured prediction,
which reduces computational requirements, and on iteratively removing irrelevant layers from large
models. IDEAS NCBR presents work on zero-waste methods for continual learning, specifically
methods based on selective ensembles of experts and methods for exemplar-free continual learning,
which both serve to mitigate catastrophic forgetting. IDEAS NCBR further contributes meth-
ods for federated contrastive learning, which reduce the total bandwidth needed for computation.
We also present contributions from CERTH, which focus reducing test-time computation by way
of knowledge distillation. Finally HPI contributes methods for low-precision Gaussian process
regression, which serve to decrease power consumption during computation.
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2 Task 1.1: Use Case Requirements and Definition
Contributing Partners: MPG, RB, RBHU, UvA, UVEG, UCPH, UPB.

2.1 Overview
The present task focuses on setting up for development the use cases demonstrating artificial
intelligence (AI) solutions for environmental sustainability:

• The Use Case 1, AI for Building Optimization, explores the application of smart control
systems for energy management in buildings. This involves the development of usage control
algorithms and the prediction of energy consumption patterns based on historical data and
meteorological information. The primary objective is to enhance energy efficiency in built
environments.

• The second use case, AI for Forecasting of Vegetation State, aims to leverage AI tech-
nologies to predict the impacts of climate extremes on ecosystems. This use case integrates
remote sensing data with reanalysis meteorological data to develop robust predictive models
for vegetation dynamics under various environmental stressors.

• The third use case, Open Materials Discovery Project, is designed as a collaborative
competition to advance AI methodologies for novel materials discovery. This initiative seeks
to accelerate the identification and development of sustainable materials through innovative
AI approaches.

Through a series of meetings and discussions, we have carefully delineated the challenges, re-
quirements, and objectives for each use case. This comprehensive approach ensures that each use
case is well-defined and aligned with the overarching goal of promoting environmental sustainability
through AI-driven solutions.

2.2 Use Case 1: AI for Building Optimization
This section provides an overview about the progress of the data collection for the UC1 Building
Optimization at D1.1, D2.1, D3.1 and D5.1. The data collected for this use case will be used to
develop AI methodologies to overcome the challenges faced in the building sector.

2.2.1 Digital transformation of the building sector

The digital transformation of the building sector is already starting to have a significant impact on
the way buildings are designed, constructed, and operated. Applications of modern computer-aided
design tools give architects and engineers the ability to capture more aspects of the building in a
digital form. The building’s digital representation can be used for a wide range of unprecedented
applications.

However, exploiting this opportunity is not a simple task, as the digital models of the buildings
under design often do not contain all the necessary information.

The various parts of the plans, such as the building services, electrical, static plans, and the
models prepared by the various disciplines, are prepared separately, and do not always enter the
digital model. For example, the building services plans often only contain the plans for the heating,
ventilation, and air conditioning systems, but do not contain the electrical, EIB, optical, network
wiring plans or the plans for the security systems.
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The building management and control systems often have their own separate digital represen-
tation displaying the building on HMI screens, but these are also not synchronized with the digital
model of the building.

Later the digital model needs to be updated repeatedly to reflect the changes made during the
construction and operation of the building. Many of the challenges faced in the building sector are
related to the lack of data and the difficulty of collecting and updating the data.

2.2.2 Data collection for the UC1 Building Optimization - RBHU Budapest Campus
Building BP201

The building B201 selected for data collection is part of the Bosch Innovation Campus Budapest.
The campus is a center for innovation and technology. The modern complex houses various business
divisions and functions – it comprises office buildings, research and development facilities, social
spaces, a parking garage, and a vehicle testing track.

The ground floor is home to laboratories, test benches, and a workshop, while the five-story
office buildings above are spaces for cooperation and exchanging ideas. The campus is an expansion
of the Engineering Center Budapest, which plays a significant role in the development of automated
and electric vehicle technology. The site is one of the leading research, development, and testing
facilities for automotive technology within the Bosch Group. The location within the 10th district
of Hungary’s capital city is exceptionally convenient, providing good transportation links and easy
access to the country’s largest airport.

In the past months, we evaluated the potential data sources available for the UC1 Building
Optimization use case. One part of the data we collect consists of months of recordings of multi-
modal time-series data describing hundreds of sensors (e.g., temperature, room occupancy, etc.)
distributed over the building, energy consumption for the whole building and relevant parts (e.g.,
larger machines). Most of the data is already being recorded and will be prepared and enriched in
Y1-Y2 by RB and RBHU, with special attention to data privacy protection.

The data is collected using a Data Management System (DMS) that acquires and manages
data from various sources such as temperature sensors, humidity sensors, air quality sensors, etc.
The DMS system provides access to this data through a WCF (Windows Communication Foun-
dation) service, which exposes methods for retrieving the data. The service can be interfaced
programmatically.

A second component of the data is the building information model (BIM) of the building. The
BIM model in our case is highly detailed and capable of providing extensive information. The BIM
model contains information about the building’s elements, such as furniture, walls, ceilings, doors,
windows, laboratory machines, and some details about mechanical and electrical components. The
BIM model also contains information about the rooms in the building, including parameters such
as user, cost center, etc. On the one hand, the BIM model is a valuable source of information for
the UC1 Building Optimization use case. On the other hand, the BIM model is a complex data
set that requires careful evaluation and processing to extract the relevant information for the use
case.

2.2.3 Content of data repository

Using the various data sources available on the RBHU Budapest Campus Building BP201, we aim
to create a data repository that will contain the following types of data:

1. Time-series data from sensors: This data will include temperature, humidity, air quality,
pressure, flow, energy consumption, valve and damper positions, pump and fan status, control
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system outputs, switches and relays status, enthalpy, operation counters, setpoints, control
values, alarm and fault indicators.

2. Building Information Model (BIM) data: This data will include detailed information about
the building’s elements, rooms, furniture, walls, ceilings, doors, windows, laboratory ma-
chines, mechanical and electrical components, and other relevant parameters.

The data repository will be structured to facilitate data processing, analysis, and modeling
for the UC1 Building Optimization use case. The data will be partially cleaned, preprocessed,
and stored in a format that allows for easy access and retrieval. The repository will also include
metadata and documentation to provide context and information about the data sources and
processing steps.

We also aim to provide cross-references between the different data sources to enable integrated
analysis and modeling. For example, we will provide metadata that can be used to connect the
sensor data to the corresponding elements in the BIM model to create a comprehensive view of
the building’s dynamics and energy consumption patterns.

We also aim to create a natural grouping of data based on the several types of equipment the
sensors are connected to, the medium they are measuring, and the location of the sensors. This
grouping will help in organizing the data and making it easier to analyze and model the building’s
energy consumption and optimization strategies.

The repository will be hosted on ZENODO, a research data repository, to ensure free access
and long-term preservation of the data. The data will be made available to the project partners
and the wider research community to foster collaboration and knowledge sharing in the field of AI
for building optimization.

The first release of the data repository is planned for month 12 of the project, with subsequent
updates and enhancements based on the progress of the project and the availability of new data
sources. We aim to provide a comprehensive and well-documented data repository that will support
the development of AI methodologies for building optimization and contribute to the project’s
overall objectives. Contributions from the project partners and the wider research community are
welcome to extend and enrich the data repository with additional data sources and insights. The
data repository released in the first wave will only contain a small subset of the data collected and
will be used for preparatory work.

The final release of the data repository is planned to be finished before the competition and
challenges organized in WP5. The final repository’s content will be based on the feedback received
from the project partners on the first release and additional data will be added to the repository
that extends the time period. No additional enrichment of the data is planned for the final release,
but the full data set will be made available for the competition and challenges organized in WP5.

2.3 Use Case 5: AI for Forecasting of Vegetation State
2.3.1 Introduction

The UC5, led by Max Planck Society (MPG), brings together multiple universities interested in
the project, including the Universitat de València (UVEG), the University of Copenhagen
(UCPH), and the University Politehnica of Bucharest (UPB). Numerous meetings and
discussions have been organized to facilitate collaboration and progress on this subject.

Global warming is driving significant changes in ecosystems and landscapes worldwide. Rising
temperatures are altering various ecological processes, resulting in shifts in plant distribution, phe-
nology, and ecological interactions. Anticipating how vegetation will respond to meteorological
changes and extreme events (vegetation forecasting) in a climate change context can help mitigate
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Figure 1. Vegetation forecasting task description. Future vegetation state is predicted with machine learning
models from past satellite imagery and past and future weather.

the damage to both human populations and biodiversity in agricultural and natural areas. The fore-
casting robustness, as in weather, is strongly contingent on lead time, prediction windows, season
and geographical context. Additionally, in forecasting vegetation dynamics, changes in vegetation
properties themselves depend strongly on the ecosystems development and their inherent resilience
and resistance to extreme events. However, and despite understanding of fundamental processes
underpinning plant functioning, the impact of extreme events on vegetation at the landscape level
is not yet well quantified, as their effects are highly heterogeneous depending on geographic loca-
tions, surrounding environment and the history of extreme events in those regions [14], [89]. This
complexity poses a challenge in developing accurate vegetation models at landscape level, leading
to a growing interest in the development of machine learning models. In a data-driven approach,
we define the task as strongly guided video prediction of satellite image time-series [103]. The
objective is to forecast a length-K sequence of future vegetation index (VT+1, . . . , VT+K) based
on previous length-T sequence satellite imagery (S1, . . . , ST ). Predictions are also guided by a set
of weather and environmental variables (e.g. precipitation, temperature etc.) during context and
prediction time steps (E1, ..., ET+K), see Figure 1. Formally, the task is to learn a function f that
can be defined as:

V̂[T+1,...,T+K] = f(S[1,...,T ], E[1,...,T+K]) (1)

2.3.2 Expected deployment

The use case focuses on developing and implementing machine learning methods to predict the
impact of climate extremes on vegetation. By leveraging several published Earthnet datasets
(https://www.earthnet.tech/), which combine Sentinel-2 data with meteorological variables from
the climate reanalysis data ERA5, it avoids the need to develop new, time-consuming datasets. We
defined four key gaps crucial to address for understanding vegetation responses to extreme events
and supporting efforts to mitigate climate change and protect ecosystems.

2.3.3 Open challenges

First, we propose developing a data-driven definition of extreme events that considers the diversity
of vegetation responses to climate extremes and their spatio-temporal extents. We will define classes
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for each location and period (Resistant, Impacted, Negative), differentiating various vegetation
responses to climate extremes. This approach aims to improve model training and validation by
capturing the onset of ecological extremes alongside associated climatic extremes. In addition, it
supports handling imbalanced classes and the spatial auto-correlation of geospatial data in machine
learning, ensuring a robust estimation our models accuracy on predicting the impacts of climatic
extremes on vegetation.

Second, we aim to enhance current state-of-the-art models by using transformer-based ap-
proaches, addressing their quadratic time and memory complexity using domain science knowledge
to drive the relationship between meteorological and environmental variables. Vegetation forecast-
ing differs from classical video prediction in several key ways that should guide model design. First,
the forecasting is spatially static over time; only the intensity of the pixels varies as trees do not
walk. Second, the temporal dimension is most important; a location’s state is influenced by its pre-
vious states and long-term weather patterns, such as the slow development and prolonged impacts
of drought [71]. Lastly, the surrounding area plays a role but can be captured by a small spatial
context, given the very high resolution of the dataset and the understanding that biogeophysical
processes propagate locally. We propose to develop a transformer-based model with sparse atten-
tion: the attention in space is limited to the surrounding pixels and we learn a sparsity function
for the attention in time.

Third, we view unseen areas, climate shifts, and novel climate extremes as a data distribution
shift problem. We propose to substitute space for time to address the data sparsity issue of
climate shift and emphasize estimating the area of applicability of our model using various test sets
representing different distribution shifts. We started to explore this direction in a workshop paper
listed in the relevant publications section. First, due to the large number of possible distribution
shifts, we formulate the problem as an unlabeled OOD detection task, meaning the detector does not
have access to any samples from the OOD dataset. Second, we will evaluate the OOD detector on
several OOD datasets representative of potential distribution shifts, such as new regions, biomes,
landcover types, or climates, and estimate the distance to the IID dataset for each OOD dataset
using model performance and adversarial validation. Third, we propose to extend the work of
[135] by using a ViT auto-encoder with a reconstruction-based pretext task, following the model
development done previously. We will adapt this for regression tasks by using a k-NN mean nearest
distance approach, following the work of [119] and similar to the method proposed by [101]. We
hope to provide a first OOD-detector for regression task in remote sensing.

Finally, we would like to evaluate the reliability of our method using weather forecasts and
different climate projections for vegetation impact estimation at short and long term scales. The
interest in developing models at different scales stems from the realization that accurately pre-
dicting vegetation response to climate extremes is essential for making informed decisions for the
development of mitigation and adaptation strategies in a climate change context, contributing to
building more resilient and sustainable societies.

2.3.4 Collaborations and future directions

Given the experience that the UCPH and the UPB hold on large models for remote sensing data,
and the interest in the domain science, WP1 activities have been supporting the collaboration be-
tween the three groups towards the develop this new model while also leveraging previous research
on large geospatial models. The realization that foundation models can provide a unique and widely
representative perspective on the geographical diversity of vegetation responses to extreme condi-
tions is a potential hypothesis to be tested. Ultimately, the model(s) will be compared against the
current state of the art in the domain (recurrent neural networks and transformers-based models),
under normal and extreme climatic conditions.
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In addition to studying the ability of different foundation models to predict the effect of climate
extremes on vegetation, the team at UPB will also address the issue of feature selection across
multiple modalities and spatial distributions. This will help us quantify and ultimately better
understand how vegetation is influenced by specific climate factors conditioned by geographic
context and spatial proximity.

2.3.5 Relevant Publications

• Robin, Claire, Mélanie Weynants, Vitus Benson, Nuno Carvalhais, Marc Rußwurm, and
Markus Reichstein. ”Spatially Far, Ecologically Close: Evaluating Extrapolation on Veg-
etation Forecasting Models.” in Machine Learning for Remote Sensing Workshop 2024, at
ICLR2024, .

2.3.6 Relevant Software Release / Datasets

The Earthnet code is available here:

• https://github.com/earthnet2021/earthnet-models-pytorch/

• https://www.earthnet.tech/

2.4 Use Case 6: Open Materials Discovery Competition
The discovery of new materials is important to many sustainability challenges. In the past decade,
density functional theory (DFT) based simulation has made significant progress in guiding the
experimental discovery of new materials for batteries and carbon capture. However, it remains
extremely expensive to discover new materials with brute-force screening. The open materials dis-
covery project is a multi-party collaboration to organise a competition on AI methods for materials
discovery. The organisation will be led by the UvA, EKUT, as well as Microsoft Research,
which has expressed its intent to participate by way of a letter of support.

We are currently in the initial stages of organizing this partnership, with a tentative goal of
organizing a competition at NeurIPS 2025. The current plan is to provide a dataset of unrelaxed
structures, for which participants will be asked to predict the top 20 candidates in terms of their
match to a set of target properties. We are currently in conversation with Microsoft and will
also reach out to other potential partners, such as the Materials Project. The UvA has hired a
postdoctoral researcher, who starts in Fall 2024 and will contribute to the organization.
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3 Task 1.2: AI for Accelerating the Design of Sustainable
Technologies

3.1 Overview
Development of new sustainable technologies involves solving challenges to identify and optimize
technologies in a manner that accounts for functional criteria, and more broadly for criteria relating
to life cycle analysis and environmental impact. From a technical point of view, a key challenge is
that we often need to consider a very large space of possible designs in problems where we can only
simulate a limited of designs, and experimentally validate an ever smaller subset. This requires
development of methods that appropriately balance exploration and exploitation. The aim of this
task is to develop such methods, with a partical focus on methods that are applicable to the design
of functional materials, such as those used in energy production and storage.

In Section 3.2, we report initial results for work on ML methods for materials design, focusing
for the moment on the specific case of foamed glass materials. This work addresses two question
relating to design problems in which we wish optimize materials according to multiple criteria. The
first is how we can design semi-supervised learning (SSL) methods that can predict multiple target
properties from partially labeled data. The second question is how we can design optimization
methods that incorporate mutliple criteria for optimization.

The work in this task in closely related to work in T1.4, which focuses on the development of
fast methods for approximation of scientific computations. There are many settings where we can
perform accurate simulations of individual candidate designs, but where simulating all possible
candidate designs is simply not feasible. In such settings, a pre-requisite for AI-based optimization
methods is that we can develop fast surrogate methods that allow us to eveluate a much larger
set of candidate designs. We return to this topic in Section 5.2, where we discuss fast simulation
methods that combine deep learning with classical density functional theory. Our eventual goal is
to use these methods for AI-driven discovery of materials for carbon capture.

3.2 Machine Learning for Materials Design
Contributing partners: JSI

3.2.1 Introduction

We address the problem of materials design, in particular the design of foamed glass materials.
Understanding the evolution of the structure of foamed glass materials during the direct foaming
process is essential for successful development of novel materials with desired porous structure.
However, due to the complexity of the process, this remains a challenging task. We have applied
machine learning methods to predict properties of a foamed glass from the parameters of the direct
glass foaming process, to provide insight into the process.

Two directions were pursued, both looking at multiple properties of foamed glasses. Along one
of these directions, we explore the use of fully labeled, as well as unlabeled data during learning
through semi-supervised learning. This means that we can use data about samples of materials
(foamed glasses) that have been fully characterized (all properties measured), as well as data about
samples that have been only partially characterized (some, but not all properties, measured).

Along the other direction, we explore a combination of machine learning and optimization to
identify potential new materials with desired properties. We build multi-target prediction models
that predict materials properties from foamed glass composition and parameters of the synthesis
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process. We then use multi-objective optimization approaches to identify combinations of compo-
sitions and synthesis parameters that are expected to yield materials with desired properties.

3.2.2 Semi-supervised multi-label classification for materials design

We used multi-label classification to predict properties of foamed glass materials. The foamed glass
samples were prepared via direct foaming with varying process parameters. In particular, eight pa-
rameters are varied. These include content parameters (water glass content, carbon black content,
Mn3O4 content, K3PO4 content) and processing parameters (furnace temperature, foaming time,
drying and mixing).

The properties of foamed glass samples were measured by using the Archimedes principle. In
particular, five properties were measured. These include the apparent and pycnometric density,
along with the overall, closed and open porosities. Each of these can have a low or a high value
and is treated as a binary label for the purpose of predictive modelling.

Machine learning methods for multi-label classification were used to learn models that simul-
taneously predict the five material properties from the eight material composition and processing
parameters. The data has 165 examples, where closed and open porosity values are missing for
41 foamed glass samples. This means that the data are partially labeled and calls for the use of
semi-supervised learning (SSL).

We use predictive clustering trees for multi-label classification (MLC), as well as ensembles
(random forests) thereof, both in supervised and in semi-supervised manner. Using random forests
for MLC allows us to also estimate variable importance, both in the supervised and semi-supervised
case. Finally, we also use tree ensembles in self-training mode for SSL.

The predictive models built have good predictive power (as measured via AUC), where en-
sembles have better predictive power than single trees. The use of incompletely labeled data
in semi-supervised learning mode improves the predictive power, with the self-training approach
performing best. The material composition (and in particular carbon black content) is more impor-
tant than the processing parameters, of which furnace temperature is the most important. Theses
insights will be useful in the design of new foamed glasses with desired properties.

3.2.3 Combining multi-target regression and multi-objective optimization
for materials design

We next address the problem of multi-criteria foamed glass design more directly, by using a combi-
nation of machine learning and optimization (MOO) approaches. In particular, we use approaches
for multi-target regression, on one hand, and multi-objective optimization approaches, on the other
hand. We consider two properties of foamed glasses.

The design problem is to obtain foamed glass with high closed porosity (ϵcl) and low apparent
density (ρapp), which can be formulated an as optimization problem with two conflicting objec-
tives. Therefore, our aim is to find the combination of foamed glass composition (in terms of four
components) and parameters of the synthesis (foaming) process that will simultaneously optimize
the two objectives. We use machine learning methods to predict (two) properties of foamed glass
from (nine) parameters of the direct glass foaming process. The latter include composition param-
eters (water glass content, carbon black content, Mn3O4 content, K3PO4 content) and processing
parameters (furnace temperature, heating rate, foaming time, drying and mixing).

The two properties to predict are ϵcl and ρapp. We build multi-target regression models for
this purpose. These include neural networks (multi-layer perceptrons). The data from which the
models are built has 124 examples, i.e., has been collected for 124 foamed glass samples.
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The learned model then represent a two-dimensional objective function, which is taken as input
for multi-objective optimization (MOO) methods. The MOO methods then identify combinations
of inputs (parameter of the glass foaming process) that yield non-dominated solutions on the Pareto
front. These either have the lowest ρapp for a given ϵcl or the highest ϵcl for a given ρapp. All of
these represent potential solutions to the multi-objective material design process, among which the
user (materials science researcher) can choose.

3.2.4 Next steps

We are already working on extending the above work in several directions. First, the multi-target
regression (MTR) models used in combination with multi-objective optimization were built in
fully supervised mode, using 124 of the 165 available material samples. The natural next step is
to use SSL to learn the MTR models. Second, we would like to test the suggested new materials
proposed by the combination of ML and MOO: Our materials science collaborators are willing to
synthesize several sample and characterize their properties. Finally, we would like to extend the
SSL approaches to perform active learning and close the loop of scientific exploration.

3.2.5 Relevant publications

There are no as yet published papers or completed drafts submitted for publication describing the
above work. A draft paper is in preparation and will be reported on in the next periodic reports.
However, the work has been described in three presentations (one oral and two poster):

• Sintija Stevanoska, Uroš Hribar, Jurica Levatic, Sašo Džeroski. Semi-supervised multi-label
classification for materials design. Workshop on new developments in automated learning and
reasoning, Leuven, 7th-8th Feb 2024.

• Sintija Stevanoska, Uroš Hribar, Jurica Levatic, Sašo Džeroski. Semi-supervised multi-label
classification for materials design. 4th Nobel Turing Challenge Initiative Workshop, Tokyo,
13th-14th Feb 2024.

• Christian L. Camacho-Villalón, Sintija Stevanoska, Uros Hribar, Matjaž Spreitzer, Jakob
König, Sašo Džeroski. Multi-criteria foamed glass design with multi-target regression and
multi-objective optimization. 4th Workshop on Machine Learning Modalities for Materials
Science, Ljubljana, 13th-17th May 2024.).
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4 Task 1.3: AI for Data-Driven Modelling of Physical Sys-
tems

4.1 Overview
This task focuses on the development of hybrid methods, which combine traditional modeling
techniques that rely on our knowledge of the physical principles of the underlying system, which
flexible parameterization of AI-based systems that can be trained on data. There is an incredible
diversity of possible approaches in this space, and this report reflects the diversity of approaches
that are currently being pursued in the ELiAS network.

In Section 4.2, we present work that explores the application of statistical methods to enhance
the physical interpretability of emulators for atmospheric radiative transfer models. On the one
hand, feature selection methods identify and select the relevant features in the input space that
impact the model outputs. On the other hand, multifidelity is used to improve the accuracy and
runtime of emulators.

In Section 4.3, the we present work that applies the Koopman operator regression framework
to break down complex dynamical systems into simpler, coherent structures, thus facilitating the
development of physically-informed machine learning models for dynamical systems. The proposed
methodology has numerous applications, including fluid dynamics, molecular kinetics, and robotics.

In Section 4.4, we present new data-driven methods for medical image applications, specifically
methods for pulmonary embolism detection, with an eventual aim of improving a capability to
develop a sustainable society, in which medical AI can better protect and improve our health,
while reducing energy consumption and human effort.

In Section 4.5, we present probabilistic grammars for modeling dynamical systems from coarse,
noisy, and partial data. Probabilistic grammars are a novel method inferring ordinary differen-
tial equations, integrating data and knowledge-driven approaches to automate the modeling of
dynamical systems.

4.2 Explainable emulator for atmospheric radiative transfer models
Contributing partner: UVEG

4.2.1 Introduction and methodology

Introduction. Statistical regression methods are widely used in remote sensing applications,
such as classification, biophysical parameters retrieval, and emulation [22], [29]. These methods
offer numerous advantages, including accuracy, adaptability, and computational efficiency. Never-
theless, the mathematical implementation and hyperparameters of the underlying machine learning
algorithm tend to lack physical interpretability. This opacity hampers our ability to understand
how the predictions are generated. Physics-aware machine learning is an approach that addresses
this issue by incorporating physics knowledge into machine learning models [51], [66], [112], [136].
This has the potential to enhance the accuracy, reliability, and performance of statistical regres-
sion models while providing a degree of model explainability that helps us to better understand
the relationships between the input and output variables. Incorporating physical knowledge into
a statistical regression method can be done in various ways, such as using physics-based features
[12], implementing physical constraints into the model [102], or generating training datasets with
physical models [29], [70].

We explore a combination of these methods to enhance the explainability and physical inter-
pretability of emulators for atmospheric radiative transfer models (RTM). These models describe
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the absorption, scattering, and emission of radiation by atmospheric constituents based on physical
principles and given a configuration of optical properties and geometric conditions. Atmospheric
RTMs are used in a variety of applications, such as remote sensing of the atmosphere, numerical
weather prediction, and atmospheric correction of satellite data. Due to their increasing com-
plexity and associated computational burden, these models are rarely directly used in operational
applications. A common solution is to interpolate look-up tables (LUT) of pre-computed RTM
simulations. However, the LUT size increases exponentially, implying an increasing time to gener-
ate it and stringent RAM requirements. This is particularly challenging for hyperspectral Earth
Observation satellite missions. With several hundred spectral channels, the data volume of LUTs
will increase by one or two orders of magnitude with respect to current multispectral missions, lim-
iting the applicability of state-of-the-art atmospheric correction algorithms. Statistical regression
models known as emulators, or surrogate models, have been proposed as an alternative to LUT
interpolation [7], [31], [122]. Emulation approximates the behaviour of a deterministic model at a
fraction of its runtime, reducing the LUT size and interpolation errors.

Two methods are explored to enhance the physical interpretability of RTM emulators: (1)
feature selection, and (2) multi-fidelity. Supervised feature selection can be used to construct
physics-aware statistical regression models. Feature selection is a technique that aims at reducing
the number of input variables in a model by selecting the most relevant ones based on their impact
on the model outputs [18], [100]. There are three main mechanisms for feature selection: (1)
wrapper, (2) filter, and (3) intrinsic (or embedded) methods. The most important sub-class of the
wrapper methods is called stepwise methods: they create multiple regression models varying the
subset of selected features and choosing the most accurate one [18]. Filter methods use statistical
techniques to assess the relationship between input and output variables [19]. Intrinsic methods
refer to statistical regression algorithms that automatically perform feature ranking and selection
during model training. Examples of intrinsic methods include automatic relevance determination
(ARD) applied to Gaussian Processes (GPs) [2], [8], neural networks [91] and random forests [5].
All these approaches have been widely used in remote sensing applications [28], [37], [51], [144]. In
this research activity, we developed a wrapper feature selection method to enhance the physical
awareness and explainability of emulators of atmospheric RTMs. Our method sequentially ranks
relevant features as they minimize a cost function and determines the optimal number of features
through the spectral information criterion (SIC) [133]. This study derived global sensitivity analysis
(GSA) from the feature selection method, identifying the most relevant input features of an RTM.
Moreover, the method was applied to embed physics information into emulators by selecting only
the relevant features affecting the input-output relationships.

To further enhance the accuracy of model predictions whilst reducing runtime, multi-fidelity
methods have been developed [4]. These methods combine limited simulations of an accurate but
computationally expensive model (high-fidelity) with a larger simulation dataset from a fast but
less accurate model (low-fidelity) [61]. By merging various fidelities, multi-fidelity methods correct
computationally cheap models so that the outputs resemble those of more accurate models. In
the context of atmospheric RTMs, multi-fidelity methods have been implemented in MODTRAN’s
scaled-DISORT method [39] and more recently in the Cluster Low Streams Regression (CLSR)
method [88]. These implementations rely on simplistic approximations or have limited applicabil-
ity. The scaled-DISORT method scales MODTRAN’s 2-stream simulations using a scaling factor
obtained from DISORT simulations at fewer wavelengths and interpolates linearly for all remain-
ing wavelengths. Conversely, the CLSR method is only applied on a small spectral range around
gaseous absorptions (e.g. O2-A band).

Considering the above limitations, our objectives are: (1) to improve the runtime and accuracy
of atmospheric RTM emulators by using multi-fidelity methods, and (2) to implement a generic
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approach that is valid for multiple RTM and covers the full spectral range (400-2500 nm).

Explainability through feature selection. The proposed method ranks the d features of
the input space taking into account their impact on the output of a deterministic model g(x) by
using a forward selection method [54], [118]. This method consists of adding recursively variables
minimizing a cost function χk that measures the difference between g(x) and gk(z(k)). Here gk(z(k))
represents a partial model that uses k ≤ d input features. The method starts searching for the
most significant single variable model (in terms of the cost function value), i.e., considering a
partial model with only one feature (k = 1). This search is repeated considering a partial model
with k = 2 variables, re-estimating the model for each pair of variables, including and keeping the
previously selected variable. This procedure is repeated until reaching a complete model of k = d
variables thus, in practice, providing a sequence of variables that will be the final ranking. Since
the forward selection method is based on minimizing the cost function χk, the produced ranking
depends directly on the model g(x). Namely, the importance associated with each feature is related
to the output that we are analyzing. In this work, we used the L1 and L2 norms (and their relative
counterparts) for the cost function χk.

The forward selection method has two main drawbacks. The first drawback is related to the
definition of the partial model gk(zk) as a reduced version of g(x). The partial model gk(zk) takes
values in a smaller space than g(x) since zk has a smaller dimension than x (except for the last
iteration, where they have the same length). Therefore, in order to obtain a partial model, we
should integrate all the features that are not included in zk. As a consequence, the partial models
are analytically unknown. The second drawback is that the model g(x) is computationally slow
in real-life scenarios (e.g., atmospheric RTMs [39]). Thus, the forward selection method would
be impractical given the many simulations needed. To overcome these two drawbacks, we use
instead a regression function ĝk(z(k)) : Rk → R that approximates g(x) with a much faster run
time. Given a specific choice of the elements zij in z(k), ĝk(z(k)i ) is obtained from the regression
z(k)i → yi, thus linking a subset of all possible features to the output y. The specific regression
method employed has an impact on the ranking of features given that the cost function depends
directly on ĝk(z(k)i ). However, if the regression method used is accurate enough and the parameters
(or hyper-parameters) are well-tuned, the obtained ranking should not change substantially for a
change of the regression function. Although emulators are a priori best suited due to their higher
flexibility and accuracy [122], they need to be re-trained every time a new feature is added. This
makes them slow for the forward selection method. Instead, a well-designed parametric model can
capture the main dependencies of g(x) while being fast to “train” (e.g., through least-squares fit-
ting) and run. In the application discussed in this study (i.e., atmospheric RTMs), a d-dimensional
2nd degree polynomial fitting was found as a pragmatic solution given the smooth dependencies of
the output spectral data (e.g., transmittance) to the input atmospheric and geometric features.

In the context of GSA, the forward selection method provides a direct way to compute sensi-
tivity indices (SI) using the cost function error magnitude with k features, V (k). We defined the
SI (ranging from 0% to 100%) for each ranked feature in z(d) as follows:

SI(k) =
100 · [V (k)− V (k − 1)]∑d

i=1[V (i)− V (i− 1)]
(2)

Indeed, the decrease in the error magnitude V (k) will be the highest in the first feature of the
ranking (k=1) and the lowest in the last feature (k=d). For multi-output models, applying the
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forward selection method as a regression-based GSA algorithm is reduced to using the single-output
version and looping over each output dimension.

In the context of emulation, feature selection was applied to include only the relevant input
features when training and running a statistical regression algorithm, thus making the emulator
model more accurate and interpretable. Without loss of generality, we used GP emulators [145]
and we proposed two options to use feature selection. The first option is to apply feature selection
directly on the multi-output data so that, instead of xi → g(xi), the emulator does now the
regression z(k)i → g(xi). In practice, this option is equivalent to a GP emulator with a Gaussian
kernel (see equation 3) with only two hyper-parameters (θf and θl) but with a reduced number of
input dimensions.

k(x, x∗) = θ2f exp
(
− (x− x∗)⊤(x− x∗)

2θ2l

)
(3)

The second option uses the sensitivity index, SI(k), to adjust the influence of features within
the regression model. This is achieved by defining the Mahalanobis Gaussian kernel as:

k(x, x∗) = θ2f exp
(
− (x− x∗)⊤W (x− x∗)

2θ2l

)
, (4)

where W is a d × d diagonal matrix with values Wkk = SI(k)2 for k=1 to d. This equation 4
can be re-written as:

k(x, x∗) = θ2f exp
(
−

d∑
k=1

Wkk(xk − x∗k)2

2θ2l

)
, (5)

which is equivalent to the ARD-Gaussian kernel in equation 6:

k(x, x∗) = θ2f exp
(
−

d∑
k=1

(xk − x∗k)2

2θ2l,k

)
, (6)

where θ2l,k ≡ θ2l /Wkk. The distinction between the ARD and Mahalanobis kernels lies in the fact
that the ARD version utilizes one scale-length hyper-parameter for each input dimension, whereas
the Mahalanobis kernel employs a single hyper-parameter. Both kernels provide a degree of model
explainability, wherein less relevant features are characterized by higher values of their associated
scale lengths, resulting in reduced impact on the model.

Multi-fidelity modeling. Multi-fidelity emulation is an approach to modeling complex systems
using multiple layers of approximation. The method builds upon simpler models, progressively
adding layers to increase accuracy. Mathematically, a multi-fidelity model can be expressed through
the equation ĝt(x) = c · ĝt−1(x)+ δt(x), where ĝt and ĝt−1 are two subsequent fidelity layers of the
model executed at the input conditions in x, c is a scaling factor of the lower fidelity later, and
δt(x) ∈ Rb models the bias between two fidelities.

In our implementation, the lowest-fidelity model, ĝ0(x), is a 2nd order polynomial fitting the
training data. The polynomial model is not only fast predicting new outputs but also representative
of the main trends that describe the dependencies between input and output spectral data of
atmospheric RTMs (mainly exponential, cosine, and power functions). For the first higher fidelity
layer, we evaluate the polynomial on the training dataset to get ĝ0(xi) (i = 1 to n) and calculate
the difference between the training data and the predictions by the lowest fidelity model, i.e.,
δ1(xi) = g(xi) − ĝ0(xi) (i = 1 to n). We then construct a new training dataset {xi, δ1(xi)}ni=1
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to train a GP emulator δ̂1(x) to approximate δ1(x). Accordingly, the first higher fidelity layer
is ĝ1(x) = ĝ0(x) + δ̂1(x). This process is repeated for a user-defined number of layers nl. For
example, for the second layer, we apply a GP emulator of the previous layer to construct a new
training dataset {xi, δ2(xi)}ni=1, where δ2(xi) = g(xi) − ĝ1(xi). This new dataset is then used to
train another GP emulator δ̂2(x) to approximate δ2(x). The prediction for a 2-layers multi-fidelity
emulator would be ĝ2(x) = ĝ1(x) + δ̂2(x) = ĝ0(x) + δ̂1(x) + δ̂2(x). The multi-fidelity process is
summarized in the following pseudo-code:

Algorithm 1 Multi-fidelity GP emulator (training)
Require: Training dataset
Fit 2nd degree polynomials for the data {xi, g(xi)}ni=1: ĝ0(x)
for t=1 to nl do
• {ĝt−1(xi)}ni=1 ← Run t− 1 fidelity layer on training data
• Calculate δt(xi) = g(xi)− ĝt−1(xi) for i = 1 to n
• δ̂t(x) ← Train emulator considering the pairs input-outputs {xi, δt(xi)}ni=1

• Set ĝt(x) = ĝt−1(x) + δ̂t(x)
end for

Ensure: Emulators and polynomial fitting: {δ̂t(x)}nl
t=1, ĝ0(x)

This layered approach allows the emulator to capture increasingly fine details of the system
behavior. The final prediction is the sum of the lowest fidelity model and all the difference models,
δ(x), from higher fidelity layers. The number of layers is user-defined, allowing for a balance
between accuracy and computational efficiency as each new layer increase runtime while improving
the model’s accuracy.

4.2.2 Experiments

Explainability through feature selection. We first analyzed the influence of the cost function
on the performance of the feature ranking method. The V (k) curve was calculated at four selected
wavelengths and with four cost functions. The values of V (k) are normalized for their corresponding
values at k=1 to better compare the results from each cost function. In Figure 2 (left) we observe
a similar behavior of the normalized V (k) curves for all the tested cost functions. In all cases,
V (k) shows a decreasing trend with the biggest decrease happening when the number of features is
increased from k=1 to k=2. All curves show a nearly flat behavior after 4 to 6 features, indicating
that additional features only contain residual information.

To complement these results, we conducted a regression-based GSA using the V (k) curves to
calculate Sensitivity Indices (SI). Figure 2 (right) depicts the GSA results for Edif across various
wavelengths and cost functions. Each color in the figures corresponds to an input feature and the
bar size reflects its importance (SI). We observe that all cost functions get similar GSA results.
Two main features (SZA ■ and AOT ■) are always identified as the key drivers for all wavelengths
with a SI of 30% to 80% for AOT and 15% to 60% for SZA. The relative norms show more sensitiv-
ity to secondary features (surface elevation ■, α ■, and g ■) with an SI ranging from 5% to 20%
depending on the wavelength. The results from the various wavelengths indicate that the forward
selection method is sensitive to the expected relevant features. For example, at 761 nm the method
shows a higher relevance of the surface elevation, and at 940 nm it is sensitive to CWV ■. The
RAA ■ does not show any influence in the GSA results, in line with the expected for nadir-view
simulations.
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Figure 2. Left: Curve V (k), normalized to 1 at k=1, at various wavelengths (λ) and cost functions: L1 (blue)
and L2 (red). Markers indicate absolute, o, and relative, x, norms. Right: GSA results for Edif and each tested
cost function. Lr

p refers to the relative Lp norm.

We analyzed how feature selection impacts the accuracy of an emulator. For that, we compared
the performance of four GP emulator configurations: Gaussian kernel with and without feature
selection (#1 and #2 respectively), ARD-Gaussian kernel without feature selection (#3), and
Mahalanobis Gaussian kernel with feature selection (#4). In Figure 3 we show the mean relative
error (MRE) achieved by these four emulators against a reference test dataset (see [152] for further
information). All emulators show similar spectral behavior of the MRE, where the higher values
correspond to spectral regions with lower surface reflectance values, as expected given the nature
of the relative error. In addition, the errors are higher inside gaseous absorption (mainly H2O
and O2) due to divisions by nearly zero during the inversion of surface reflectance. Moreover,
the MRE values tend to be higher towards shorter wavelengths (<500 nm) due to the impact
of aerosol scattering. In terms of accuracy, the highest errors are obtained with the basic GP
emulator (configuration #1). Feature selection (configuration #2) improves the results by 0.1%
to 0.2% depending on the wavelength. The only exception is inside the O3 absorption (530-640
nm), where the GP emulator with feature selection obtains the highest errors (1.5%). Applying
the feature ranking through the Mahalanobis kernel (configuration #4), the results are improved
by nearly a factor 2 in the visible spectral range (400-700 nm) and remain the same in the rest of
the spectral range. The emulator with an ARD-Gaussian kernel (configuration #3) achieves the
lowest errors in all wavelengths with MRE values 0.2% to 0.6% outside of absorption bands.
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Figure 3. Spectral MRE (in %) for various emulators with and without feature selection (see legend).

Tab. 2 summarizes the accuracy results from the three GP emulator configurations, along with
their runtimes when predicting 10000 samples. These results demonstrate that feature selection
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enhances the accuracy of a GP emulator with a Gaussian kernel by 0.2%, all while maintaining
a negligible increase in runtime. Nonetheless, the ARD-Gaussian GP emulator exhibits superior
accuracy, albeit at the cost of longer runtime. The Mahalanobis Gaussian kernel (configuration
#4) requires as much runtime as the ARD-Gaussian GP emulator but with nearly twice the value
of MREλ.

Table 2. Accuracy (MREλ, in %), runtime (in s), and explainability for the prediction of 10000 samples using
four GP emulator configurations.

Config.: #1 #2 #3 #4
MREλ (%) 1.8 1.6 0.5 0.9

Runtime (s) 1.4 1.5 2.3 2.3
Explainability Low Medium Medium High

Multi-fidelity modeling. The proposed multi-fidelity approach was used to train and validate
emulators with various configurations, varying the number of layers and PCA components. A
full analysis of the validation results is presented in [145] but a summary of the main findings is
described within the next paragraphs.

The performance of the multi-fidelity GP emulators was first analyzed as a function of the num-
ber of PCA components (nc) and multi-fidelity layers (nl) using a training database of 500 samples.
Their accuracy is compared by plotting the spectral mean relative errors (MRE) (Figure 4) (only
the results with nc=7 are shown here). Generally, all results show similar spectral behavior with
relative errors increasing inside the deep H2O and O2 absorption bands. These results indicate that
increasing the number of PCA components reduces the errors in the predicted spectral data. This
is particularly observed in the case of the simple (i.e., no multi-fidelity, nl=0) GP emulator, where
the errors are reduced by a factor ∼5 when passing from three PCA components to 15 components.
The higher errors associated with a low number of PCA components (nc=3) are somewhat com-
pensated by adding extra layers in the multi-fidelity GP emulators. This improvement seems to
reach a saturation limit after nl=3 layers. However, this lower limit in the MRE values is achieved
with fewer fidelity layers when adding more PCA components. In the extreme case of nc=15, an
emulator of only one fidelity layer obtains the lowest MRE values. This error is still lower than
with a simple GP emulator in the 400-1100 nm spectral range. It is also observed that the addition
of new fidelity layers reduces the values of MRE differently depending on the spectral range and
the number of PCA components. For instance, with nc=7, passing from nl=1 to nl=2 only reduces
the MRE for wavelengths above 1000 nm.

The results of the experiment indicated that increasing the number of PCA components and
multi-fidelity layers reduce prediction errors. However, adding extra layers in a multi-fidelity
emulator seems to reduce faster the error values than adding additional PCA components. The
lowest error value of 0.4% is achieved with three multi-fidelity layers regardless of the number of
PCA components. This error value can also be achieved with as little as 5 PCA components and
three layers or 7 PCA components and two layers. The analysis was done in terms of prediction
runtime. The runtime varies linearly as a function of nc and nl. As expected, the fastest emulator
is also the simplest (nc=3 and nl=0) and calculates the prediction in 1.5 s. On the contrary, the
slowest emulator is also the most complex (nc=15 and nl=5) with a runtime of 18 s. However, a
balanced emulator consisting of 5 PCA components and three multi-fidelity layers has a runtime of
5 s and achieves the same accuracy (0.4%) as the most complex emulator. Since the combination
of the number of PCA components and multi-fidelity layers can compensate one another and reach
similar accuracy and performance, we plot in Figure 5 a bar chart with the product of runtime and
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Figure 4. Spectral MRE (in %) for the multi-fidelity emulators (from 0 to 5 layers) for 7 PCA components.
Training dataset size: n=500.

prediction error. Indeed, we seek an emulator that obtains the lowest errors with a competitive
runtime. This figure shows that the most balanced emulators are achieved with nl=1 multi-fidelity
layers regardless of the number of PCA components. Among them, the best balanced emulator is
achieved with 5 PCA components and one multi-fidelity layer, which results in an error of 0.54%
and a runtime of 1.86 s. To achieve the same accuracy-time performance as the fastest emulator
(nc=3 and nl=0), an emulator with nc=3 and nl=4 (or with nc=7 and nl=3) should be considered.
That is, the gain in accuracy (1.8% to 0.4%) compensates for the increase in runtime (1.5 s to 6.3
s),
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Figure 5. Product of prediction error and runtime as a function of the number of PCA components and
multi-fidelity layers. Training dataset size: n=500.

Based on these findings, we fixed the number of PCA components to nc=5 and studied the
impact of training dataset size on accuracy and performance (see results in [145]).The experiment
indicated that, in all emulator configurations, the prediction errors decrease when increasing the
size of the training dataset. However, this reduction is driven by the number of fidelity layers. With
a small training dataset of n=100 training samples, the simple GP emulator (i.e., nl=0) obtains
the lowest MRE compared to any multi-fidelity emulator. The increase of the training dataset size
to n=500 reduces the MRE results of this simple emulator by nearly a factor of 10 in the visible
spectral range without major improvements at longer wavelengths (>1500 nm). Further increase
in the training dataset size (n=1000) does not improve the emulator accuracy. This situation is
reversed with emulators of one or more layers after 500 training samples. In these configurations,
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the MRE values are lower than with nl=0 for all wavelengths. When increasing n to 1000, no
further improvements are observed at wavelengths above 1500 nm in the case of nl=1. Yet, adding
extra layers allows the emulators to reduce error values further by exploiting the data from larger
datasets.

4.2.3 Conclusions

In the research activities presented in Sections 4.2.1 and 4.2.2, we have made progress in the
development of physics-aware emulators for atmospheric RTMs.

In the first study, we proposed a feature selection method to enhance the explainability of emula-
tors by integrating physics knowledge through statistical regression. We presented two approaches:
(1) direct feature selection on spectral data and (2) constructing a Mahalanobis Gaussian kernel
on the GP regressor for each PCA component. Our results show that this physics-aware feature
selection improves the accuracy of emulators by 0.2% and enhances model explainability, although
the ARD-Gaussian kernel GP emulator still achieved the highest overall accuracy. Despite modest
accuracy gains, this method could overcome the limitations of an ARD-Gaussian GP regression in
high-dimensional input spaces without requiring dimensionality reduction.

In the second study, we implemented multifidelity methods to boost the accuracy and per-
formance of atmospheric RTM emulators. We analyzed key configuration parameters and found
that multifidelity significantly reduces prediction errors, outperforming simple GP emulation. By
doubling the training samples, prediction errors decreased by about 50%, though runtime also
doubled. We recommended an emulator with one fidelity layer, five PCA components, and 500
training samples, achieving a prediction error of 0.56% in 1.86 seconds for 10,000 samples.

Both methodologies can be combined, reaching efficient and physics-aware emulators. How-
ever, there is still room for improvement to achieve fast and more accurate emulators that could
potentially be used for operational satellite data processing. These strategies include using active
learning techniques, and optimized implementation of emulators to improve the accuracy and per-
formance of atmospheric RTM emulators, enabling their widespread use in operational satellite
data processing. Physics-awareness can be further enhanced through the use of symbolic regression
methods into so-called hybrid modeling. Our ongoing research extends our previous work on en-
hancing emulator interpretability through feature selection in model inputs to now focus on feature
selection in model outputs. Previously, we improved emulator interpretability by selecting only
relevant input variables. Now, we aim to apply a similar principle to model outputs using symbolic
regression methods, specifically LASSO [131]. This approach applies physics-based dimensionality
reduction and feature selection to the output space. By expressing data with a semi-empirical
parametric model and using LASSO, we identify the most relevant interpretable model parame-
ters, which then serve as new variables for training a statistical regression model. This method
effectively replaces our previous use of PCA for dimensionality reduction with a more physically
interpretable approach. Symbolic regression, which assumes physical laws can be described by
sparse and algebraic input-output relationships, offers the ability to discover mathematical models
from data patterns. While various symbolic regression methods exist, we are focusing on LASSO
for its simplicity, efficiency, and scalability in handling larger input spaces. This approach bridges
our previous work with a new focus on output space, offering a comprehensive strategy for creating
physically interpretable emulators that are efficient in both input and output representations.

29



4.2.4 Relevant Publications

• J. Vicent Servera, L. Martino, J. Verrelst and G. Camps-Valls, ”Multifidelity Gaussian Pro-
cess Emulation for Atmospheric Radiative Transfer Models,” in IEEE Transactions on Geo-
science and Remote Sensing, vol. 61, pp. 1-10, 2023, Art no. 5519210.

• J. Vicent Servera, L. Martino, J. Verrelst, J. P. Rivera-Caicedo and G. Camps-Valls, ”Multi-
output Feature Selection for Emulation and Sensitivity Analysis,” in IEEE Transactions on
Geoscience and Remote Sensing, vol. 62, pp. 1-11, 2024, Art no. 5506411.

4.2.5 Relevant Software Releases / Datasets

Atmospheric RTM data for training emulators. Several datasets of spectral atmospheric
transfer functions (i.e. path radiance, transmittances, spherical albedo) simulated with MOD-
TRAN6 atmospheric radiative transfer model are publicly available in the Zenodo repository
doi.org/10.5281/zenodo.7826005. The simulations are stored in hdf5 files using the Atmospheric
Look-up table Generator (ALG) toolbox (https://doi.org/10.5194/gmd-13-1945-2020). Each dataset
has an associated .xml file that includes the configuration of MODTRAN6 executions. All datasets
include the input atmospheric/geometric variables summarized in Table 3. Each dataset file has
a random distribution (based on latin hypercube sampling) of these input variables with varying
numbers of points (e.g. train500.h5 contains 500 samples). The reference dataset contains 10000
samples and was used as a reference for evaluating Gaussian Processes emulators.

Input Variables Units Min Max

O3 column concentration atm-cm 0.25 0.45
Columnar Water Vapor g/cm2 0.2 4
Aerosol Optical Thickness - 0.04 0.6
Asymmetry parameter - 0.5 0.85
Angstrom exponent - 0.1 2
Single Scattering Albedo - 0.8 1
Surface elevation km 0 2.5
Solar Zenith Angle deg 0 70
Relative Zenith Angle deg 0 180

Table 3. Input variables and range for the MODTRAN6 training/testing datasets.

RTM emulation software tool. To develop the physics-aware emulator strategies described
in the previous sections, we have been developing a series of tools to automate the configuration,
training, and validation of various emulators and facilitate their intercomparison. The ALG toolbox
[83] was extensively used to generate data sets for the training and validation of emulators such
as those available in the Zenodo repository (see above). The ALG toolbox was expanded with an
Emulation Tool that facilitates the configuration and training of various emulators, as well as their
validation against reference data. Within the ALG toolbox, the emulator function (algEmulator)
was implemented. This function includes all the functionalities described in the above paragraphs,
including dimensionality reduction, training of GP models, emulation/prediction, feature selection,
and global sensitivity analysis. The ALG tool can be freely downloaded from www.artmotoolbox
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.com. The emulator function is accessible from https://github.com/jorviser/AlgEmulator for
standalone use.

4.2.6 Relevant Use Cases

One relevant example in which the proposed atmospheric RTM emulators are being implemented
by the authors is in the context of atmospheric correction of satellite data. Atmospheric correction
aims at converting the top-of-atmosphere (TOA) radiance signal measured by a satellite instrument
into surface reflectance by compensating the effects of scattering and absorption occurring in the
Earth’s atmosphere. After atmospheric correction, the derived surface reflectance data is used
to retrieve geophysical properties for applications such as vegetation monitoring or water quality.
In general, accurate atmospheric correction algorithms rely on RTM to derive the atmospheric
composition and retrieve the surface reflectance. However, the computational burden and memory
requirements to run an RTM make their use impractical in routine data processing chains such as
atmospheric correction. In this context, we have implemented RTM emulators as an accurate and
fast alternative over traditional LUT interpolation methods.

An example of such use is in the frame of the ESA/NASA excercise called ACIX-III, which
aims at intercomparing atmospheric correction algorithms with focus on the hyperspectral satellite
missions EnMAP and PRISMA1. Both satellite instruments offer similar characteristics: a spectral
coverage in the 400-2500 nm range with nearly 240 spectral bands of ∼10 nm resolution. The input
top-of-atmosphere radiance product has a size of roughly 30×30 km2 with a spatial resolution of
30 m, resulting in an image of around 1 million pixels. One of the algorithms participating in
ACIX-III, the MAGAC algorithm, makes extensive use of the developed emulators in [145], [152]
and related software tools [83]. Without going into out-of-the-scope details, MAGAC retrieves
water vapor through a differential absorption technique dubbed APDA [3] and aerosols with a
state-of-the-art optimal estimation algorithm inspired on ISOFIT [59]. The retrieval of surface
reflectance inverting the radiative transfer equation analytically similar as done in the Sentinel-2
sen2cor package [44].

4.3 Learning Dynamical Systems via Koopman/Transfer Operator
Contributing partner: IIT

Dynamical systems provide a mathematical framework for describing the evolution of state
variables over time. In numerous applications, these models often represented by unknown non-
linear differential equations (which may be ordinary or partial, and possibly stochastic) require
data-driven techniques to characterize the system and predict future states. Theoretical aspects of
dynamical systems are well-documented in the literature. Our initial observation is that, despite
the well-established nature of data-driven algorithms for reconstructing dynamical systems, their
connection to statistical learning remains largely unexplored. Our overarching goal is to bridge
these two important research areas and to establish a solid theoretical foundation for data-driven
methods, ensuring statistical guarantees and a comprehensive framework for learning dynamical
systems.

In recent years, researchers have stressed the importance of developing physically-informed
machine learning models that prioritize interpretability and foster physical insight and intuition,
see for example [97] and its references. To learn and interpret nonlinear dynamical systems, the
Koopman operator regression framework is highlighted in these works, e.g. [34], [111]. A key
element of this approach is the Koopman Mode Decomposition (KMD), which breaks down complex

1More details about the PRISMA and EnMAP missions cand be found at www.asi.it/en/earth-science/prisma/
and www.enmap.org/.
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dynamical systems into simpler, coherent structures. When the Koopman operator is learned from
data using ordinary least squares, the resulting estimated KMD is referred to as Dynamic Mode
Decomposition (DMD) [17]. Koopman operator estimators and their modal decomposition have
numerous applications, including fluid dynamics, molecular kinetics, and robotics.

4.3.1 Technical Description

First, let’s briefly review the basic concepts related to Markov chains and Koopman operators.
Let X := {Xt : t ∈ N} be a family of random variables with values in a measurable space (X ,ΣX ),
known as the state space. We call X a Markov chain if P{Xt+1 ∈ B |X[t]} = P{Xt+1 ∈ B |Xt}.
Furthermore, we call X time-homogeneous if there exists p : X × ΣX → [0, 1], referred to as the
transition kernel, such that for every (x,B) ∈ X × ΣX and every t ∈ N,

P {Xt+1 ∈ B|Xt = x} = p(x,B).

A large class of Markov chains includes those that possess an invariant measure π satisfying
π(B)=

∫
X π(dx)p(x,B) for B ∈ ΣX . The Koopman operator returns the expected value of observ-

ables of the system in the future, given the present, and estimators of this operator are used to
estimate its spectral decomposition, leading to the estimation of KMD. For a time-homogeneous
Markov chain with an invariant (stationary) distribution π, the (stochastic) Koopman operator
Aπ : L

2
π(X )→ L2

π(X ) is defined as

Aπf(x) :=

∫
X
p(x, dy)f(y) = E [f(Xt+1)|Xt = x] , f ∈ L2

π(X ), x ∈ X . (7)

In many practical cases, Aπ is unknown, but data from one or more system trajectories are
available. The main reason for using the (stochastic) Koopman operator in dynamical systems is
that its linearity can be exploited to compute a spectral decomposition. In many situations, espe-
cially for compact Koopman operators, there exist scalars µi ∈ C, known as Koopman eigenvalues,
and observables ψi ∈ L2

π(X ) \{0}, known as Koopman eigenfunctions, such that Aπfi = µifi. The
dynamical system can then be decomposed into a superposition of simpler signals that can be used
for various tasks such as system identification and control. This is particularly elegant when Aπ

is compact, as for every observable f ∈ L2
π(X ), there exist corresponding scalars γfi ∈ C, known

as Koopman modes of f , such that

At
πf(x) = E[f(Xt) |X0 = x] =

∑
j∈N

µt
jγ

f
j fj(x), x ∈ X , t ∈ N. (8)

This formula is known as Koopman Mode Decomposition (KMD). It decomposes the expected
dynamics observed by f into stationary modes γfj that combine with temporal changes governed
by eigenvalues µj and spatial changes governed by the eigenfunctions fj [34].

KMD is closely related to the general theory of spectral decomposition for bounded linear
operators, specifically the Riesz decomposition theorem. The KMD of a compact self-adjoint
Koopman operator can be stated as

At
πf(x) = E[f(Xt) |X0 = x] =

∑
j∈N

µt
j ⟨fj , f⟩ fj(x), f ∈ L2

π(X ), x ∈ X , t ∈ N. (9)

An operator regression learning framework was proposed to estimate the Koopman operator on
L2
π(X ) in a reproducing kernel Hilbert space H with an associated feature map ϕ : X → H. Given
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a dataset of consecutive states Dn := (xi, yi)
n
i=1, estimators minimize the mean square error (MSE)

risk
R̂(G) := 1

n

∑
i∈[n]∥ϕ(yi)−G∗ϕ(xi)∥2, (10)

where G ∈ HS (H), the space of Hilbert-Schmidt operators acting on H. Minimizing the Tikhonov
regularized risk leads to the kernel Ridge regression (KRR) estimator Ĝγ = Ĉ−1

γ T̂ , expressed via
the input and cross empirical covariances

Ĉ = 1
n

∑
i∈[n] ϕ(xi)⊗ϕ(xi), and T̂ = 1

n

∑
i∈[n] ϕ(xi)⊗ϕ(yi),

where Ĉγ := Ĉ + γIH.
In practice, dynamical systems are only observed, and neither A nor its domain F = L2

π(X )
are known, presenting a significant challenge for learning them from data. The most common
algorithms aim to learn the action of A : F → F on a predefined Reproducing Kernel Hilbert
Space (RKHS) H, which forms a subset of functions in F [13]. This allows, via the kernel trick,
to frame the problem of learning the restriction of A to H, A|H : H → F , through empirical
risk minimization. However, recent theoretical advances have shown that such algorithms are
statistically consistent only to PHA|H, where PH is the orthogonal projection onto the closure of
H in F . The projection PH confines the evolved observables back inside H, thus, generally altering
the dynamics of the system. Therefore, to accurately learn the dynamics, two main requirements
on H are necessary: i) A|H must approximate A well, meaning H must be sufficiently large relative
to the domain of A; ii) the difference between the projected restriction and the true one, i.e., the
approximation error

∥∥[I − PH]A|H
∥∥, needs to be minimal.

When H is an infinite-dimensional universal RKHS, both requirements are met, i.e., H is
dense in F and the approximation error is zero, leading to an arbitrarily good approximation of
dynamics with sufficient data. Nonetheless, another critical issue arises as the norms on the a-priori
chosen H and the unknown F do not coincide, since the latter depends on the process itself. This
metric distortion phenomenon has been recently identified as the cause of spurious estimation of
the spectra of A, limiting the utility of the learned transfer operators. Even if A is self-adjoint,
meaning the eigenfunctions are orthogonal in F , the estimated ones will not be orthogonal in H,
resulting in spectral pollution. This motivates the additional requirement that iii) H is a subspace
of F , i.e., both spaces share the same norm.

In summary, the ideal H is the leading invariant subspace of A, corresponding to the largest
(in magnitude) eigenvalues of A. This subspace H achieves zero approximation error, eliminates
metric distortion, and best approximates (in the dynamical system sense) the operator A. Since
any RKHS H is entirely described by a feature map, learning a leading invariant subspace H from
data is fundamentally a representation learning problem.

We begin by formalizing the problem of learning a good finite-dimensional representation space
for A, and then address the same for the generator L. Our approach is inspired by the following
upper and lower bounds on the approximation error, a direct consequence of the norm change from
H to F ,

∥[I − PH]APH∥2 λ+min (CH) ≤
∥∥[I − PH]A|H

∥∥2 ≤ ∥[I − PH]APH∥2 λmax (CH) ,

where CH is the covariance operator on H w.r.t. the measure π, while λ+min and λmax are the
smallest and largest non-null eigenvalues, respectively. Note that the norms on the hypothetical
domain H and true domain L2

π(X ) coincide if and only if CH = I, in which case equalities hold in
the mentioned equation and the approximation error becomes ∥[I − PH]APH∥.

When the operator A is known, the latter quantity can be directly minimized by standard
numerical algorithms for spectral computation to find invariant subspaces. Unfortunately, in our
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stochastic setting, A is unknown since we cannot compute the conditional expectation. To overcome
this issue, we propose a learning approach to recover the invariant space H, which is rooted in the
singular value decomposition, holding under the mild assumption that A is a compact operator.
The main idea is that the subspace made of the leading r left singular functions of A serves as a good
approximation of the desired leading invariant subspace of A. Namely, due to the orthonormality of
the singular functions, we have that CH = I and PHA becomes the r-truncated SVD of A, that is,
its best rank-r approximation. Therefore, according to the previous equation, the approximation
error is at most σr+1(A), which can be made arbitrarily small by increasing r. Moreover, the
distance of the subspace of left singular functions to the desired leading invariant subspace is
determined by the ”normality” of A. If the operator A is normal, that is AA∗ = A∗A, then both
its left and right singular spaces are invariant subspaces of A, resulting in zero approximation error
regardless of r. This leads us to the following optimization problem

max
H,H′⊂L2

π(X )

{
∥PHAPH′∥2HS | CH = CH′ = I, dim(H) ≤ r,dim (H′) ≤ r

}
.

Using the application of Eckart-Young-Mirsky’s Theorem, we can show that the desired rep-
resentation space H can be computed by solving the above problem. Note that, in general, the
auxiliary spaceH′ is needed to capture the right singular functions, while if we have prior knowledge
that A is normal, without loss of generality, one can set H = H′ in the above equation.

Figure 6. Pipeline for learning dynamical systems. DPNets learn a data representation to be used with standard
operator regression methods. In turn, these are employed to solve downstream tasks such as forecasting and
interpreting dynamical systems via spectral decomposition.

In Summary, in this project, we synergistically combine both kernel and DNN paradigms:
initially, DNNs are utilized to learn an invariant representation that fully captures the system
dynamics. This representation is then forwarded to kernel-based algorithms for the actual transfer
operator regression task. This general framework is illustrated in the above figure. Our method,
termed Deep Projection Networks (DPNets), addresses the challenge of providing good represen-
tations to the operator regression algorithms. It can be formulated as an optimization problem
over neural networks and can benefit from a differentiable and numerically well-conditioned score
functional, enhancing the stability of the training process.

4.3.2 Relevant Publications

• Kostic, V. R., Novelli, P., Grazzi, R., Lounici, K., Pontil, M. (2024, May). Learning invariant
representations of time-homogeneous stochastic dynamical systems. In ICLR 2024.

4.3.3 Relevant Software Releases / Datasets

We developed a Python library for learning the Koopman/transfer operator. We aimed to make
it user-friendly and convenient by including documentation and several examples across different
fields. You can find the documentation webpage for the library at https://kooplearn.read
thedocs.io/latest/, and the GitHub repository at https://github.com/Machine-Learn
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ing-Dynamical-Systems/kooplearn. Additionally, for the specific paper ”Learning invariant
representations of time-homogeneous stochastic dynamical systems - ICLR 2024,” you can use the
GitHub repository at https://github.com/pietronvll/DPNets.

4.3.4 Relevant Use Cases

The tool outlined in previous sections has a wide range of potential applications, including energy
forecasting, epidemiology, finance, atomistic simulations, fluid dynamics, weather and climate fore-
casting, neuroscience, and many other fields.

4.4 Towards Sustainable Medical AI Technologies: Anatomically Aware
Dual-hop Learning for Pulmonary Embolism Detection

Artificial Intelligence has the capacity to significantly improve the ability of doctors to detect and
recognize various medical conditions and diseases, through the development of intelligent systems
and instruments in a vast array of medical domains. Being able to learn efficiently from large
quantities of medical data can significantly increase both the accuracy and speed of diagnosis at a
highly reduced human and financial cost. This affects, either directly or indirectly, our capability
to develop a sustainable society, in which medical AI can better protect and improve our health,
while reducing energy consumption and human effort.

In our recent work, we developed such an efficient learning system for addressing one of the
major health concerns of our society, which is the early detection and subsequent efficient treatment
of pulmonary embolism. Pulmonary embolisms (PEs), manifesting as a blood clot (thrombus) in
the pulmonary arteries, represent a major health concern, having a high rate of incidence and
mortality, representing globally the third most frequent cardiovascular syndrome, trailing only
myocardial infarction and stroke [23]. Pulmonary embolisms affect between 39-115 per 100 000
individuals, while the closely related deep vein thrombosis affects 53-166 per 100 000 individuals
[79], causing up to 300 000 deaths per year in the US alone [38]. This situation is likely to be
exacerbated by the correlation with previous Covid19 infections [116], and the rising tendency of
PE incidence observed in longitudinal studies [79].

Of the reported deaths, 34% happen suddenly, or within a few hours after the acute event,
i.e., before a treatment can take affect or even be initiated [11]. Hence, PE diagnosis is a time
critical procedure. Thus, given the gravity and urgency of PEs, together with the rising workload
of hospitals [20], an approach for the triage and prioritization of patients, which is both fast and
accurate, is deemed necessary.

The gold standard for diagnosing pulmonary embolisms is the CT pulmonary angiogram [21],
a medical imaging modality which sets the task of pulmonary embolism detection in the realm
of modern computer vision with deep neural networks. Deep neural networks in general, and
convolutional neural networks (CNNs) in particular, are well known for their pattern recognition
and detection capabilities in the vision domain. Such models have been shown to work well with
medical imaging, achieving great results on CTs, for tasks such as Chronic obstructive pulmonary
disease [96], Covid-19 detection [81] or intracranial hemorrhage [47]. Accurate results are also
reported on other imaging modalities, such as radiography [68] and magnetic resonance imaging
(MRI) [60]. However, despite the strong recent success of deep learning and computer vision
in various medical image analysis tasks, for Pulmonary Embolism detection there are few works
published recently [115].

Given the need for reducing the workload in hospitals, and the strong previous results obtained
by CNNs in the space of disease detection and classification using medical imaging, in this study
we design an image processing system, which starts with the detection of specific anatomical
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Figure 7. Proposed workflow: each stage represents one of the contributions. Left: Anatomically Aware
Segmentation and Cropping, through which data is specialised for PE detection. Middle: Anatomically Aware
Pretraining on the related task of Anatomical Landmark Detection, through which the model is primed for our task
of Pulmonary Embolism detection. Right Hopped training, through which model predictions are refined, over two
hops of neural processing.

structures and continues with a two-phase (initial followed by refined) detection of pulmonary
embolisms. Each component in the pipeline is vital for the observed performance, as demonstrated
below in the thorough theoretical and experimental analysis and validation.

Main Contributions. We introduce an efficient and highly-accurate deep neural architecture
for Pulmonary Embolism detection, with state-of the art performance, which comprises three differ-
ent phases, along three independent axes, which prove to be necessary for an accurate performance.
They constitute the main contributions of your approach:

1. First phase: anatomically aware masking and cropping of lung and heart regions. Deep
neural modules trained on physiological information for segmenting lung and heart regions
are used to segment only the relevant information with respect to PE detection.

2. Second phase: anatomically aware pretraining. Relevant features are pretrained on the
task of localizing specific anatomical keypoints, before starting the PE learning phase.

3. Third phase: dual-hop architecture for PE detection. The dual-hop architecture performs
classification in two-stages. The first stage performs an initial evaluation, and the second
stage, having access to the initial input as well as the output of the first stage, is able to
produce a more accurate, refined prediction.

From an experimental point of view, we show that each component brings an important boost
in performance, while the overall system achieves state of the art results compared to the recently
published methods.
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4.4.1 Discussion and conclusions

The three phases we porpose, in essence, follow the intuitive normal steps in which a doctor
performs the diagnosis based on medical images: (1) focus of attention on the region of interest,
(2) use of rich previously learned knowledge of anatomy, and (3) a rigorous pathological examination
during several cycles of inspection at different levels of detail.

We perform extensive experiments on highly relevant datasets RsnaPEDataset, which demon-
strate the effectiveness of each of these phases, with significant quantitative improvements over
strong baselines and recent state of the art, in the big data regime. Besides the demonstrated
results on a specific and highly important medical problem, the three mechanisms introduced in
this paper also constitute a more general proof of concept, which could open the door for similar
approaches in other medical analysis tasks. Such highly effective methods could push the techology
towards medical systems, which could significantly contribute to a sustainable and healthy society,
by improving efficiency and accuracy of medical diagnosis, while reducing energy consumption and
human effort.

4.4.2 Relevant publications

Condrea, Florin, Saikiran Rapaka, Lucian Itu, Puneet Sharma, Jonathan Sperl, A. Mohamed Ali,
and Marius Leordeanu. ”Anatomically aware dual-hop learning for pulmonary embolism detection
in CT pulmonary angiograms.” Computers in Biology and Medicine 174 (2024): 108464.

4.5 Probabilistic grammars for modeling dynamical systems from coarse,
noisy, and partial data

Contributing partner: JSI

4.5.1 Introduction

Ordinary differential equations (ODEs) are a widely used formalism for the mathematical modeling
of dynamical systems, a task omnipresent in scientific domains. We introduce a novel method for
inferring ODEs from data, which extends ProGED, a method for equation discovery that allows
users to formalize domain-specific knowledge as probabilistic context-free grammars and use it for
constraining the space of candidate equations. The proposed method thus integrates data and
knowledge-driven approaches to automated modelling of dynamical systems.

The extended method can discover ODEs also from partial observations of dynamical systems,
where only a subset of state variables can be observed. To evaluate the performance of the newly
proposed method, we perform a systematic empirical comparison with alternative state-of-the-art
methods for equation discovery and system identification from complete and partial observations.
The comparison uses Dynobench, a set of ten dynamical systems that extends the standard Strogatz
benchmark.

We compare the ability of the proposed method and several competitior methods to recon-
struct the known ODEs from synthetic data simulated at different temporal resolutions. We also
consider data with different levels of noise, i.e., signal-to-noise ratios. The improved ProGED com-
pares favourably to state-of-the-art methods for inferring ODEs from data regarding reconstruction
abilities and robustness to data coarseness, noise, and completeness.
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4.5.2 The proposed methodology for automated modelling

ProGED discovers equations by following the generate-and-test paradigm. In the generate phase,
ProGED addresses the task of structure identification, in which candidate equations (structures)
are constructed. The test phase performs parameter estimation, in which the values of unknown
numeric parameters in the equations are fit to data. Among a large number of tested equations,
ProGED chooses the ones with the lowest error-of-fit. ProGED composes candidate equations from
algebraic expressions, sampled from a probabilistic context-free grammar (PCFG).

A context-free grammar (CFG) is defined by the tuple (T ,N ,R, S). When defining arithmetic
expressions, the set of terminal symbols T consists of symbols representing variables (e.g., x, y),
operators or functions (e.g., +, ·, sin), and constant parameters (c). The nonterminal symbols in
N do not appear in expressions, but represent higher-level concepts in the language of mathe-
matics, such as polynomials, monomials or terms. The set R contains production (rewrite) rules
A→ α1 . . . αk, where A ∈ N and αi ∈ N ∪ T . A production rule specifies how to replace a par-
ticular nonterminal symbol with a string of nonterminal and terminal symbols. In a probabilistic
context-free grammar, each production rule is assigned a probability, so that the probabilities of
all production rules with the same nonterminal symbol on the left-hand side (LHS) sum up to 1.
An example grammars that was used in our experiments are shown in Table 4.

The generation of a random expression with a PCFG begins from a string (starting symbol) S
and proceeds by successively applying production rules to the string until only terminal symbols
remain. Whenever more than one rule applies, we randomly choose a rule according to the proba-
bilities. The final result of one instance of the sampling process is an arithmetic expression, which
we transform to its canonical form by using the symbolic mathematics engine SymPy.

Besides acting as a generator of expressions, a grammar is a powerful way of encoding back-
ground knowledge. Note that a PCFG defines a probability distribution over the space of candidate
expressions, which allows the user to impose an inductive bias by manipulating the production
probabilities. For example, we can manipulate the complexity of generated equations through the
probabilities of recursive productions, or express a bias towards trigonometric functions by raising
their respective probabilities. In the absence of background knowledge, we can use a universal
grammar for generating an arbitrary expression, composed of the four basic operations (+,−, ∗, /),
as well as arbitrary functions.

After generation, a candidate equation contains generic constants (denoted by c), the values of
which must be fitted to data. Since the equations are, in general, non-linear in their parameters,
a universal optimization algorithm is used to minimize the error-of-fit to the data, which can
be computationally demanding, but is more flexible than approaches based on linear regression.
ProGED uses the differential evolution (DE) algorithm for numerical optimization to fit the values
of the constants in an expression to the provided data.

Numeric differentiation and algebraic equation discovery. The task of discovering
ODEs can be transformed into a task of discovering algebraic equations by numerically calculating
the derivatives of the state variables. These time derivatives are then considered as dependent vari-
ables and placed in the LHS of algebraic equations to be discovered. In that case, we estimate the
parameter values by minimizing the difference L between the observed (calculated) and predicted
values of the time derivatives of the state variables,

L =

√√√√ 1

n

n∑
i=1

(u̇(ti)− ˆ̇u(ti))2, (11)

where u̇(ti) represents the value of the time derivative of variable u at time ti, numerically calculated
from observed data, ˆ̇u represents the corresponding predicted value, obtained by evaluating the
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candidate equation, and n is the number of observed time points.
This simple transformation is commonly used by ODE discovery approaches. However, its use

is problematic if we deal with coarsely sampled measured values of the system variables and high
levels of noise. Also, this approach is only possible when the measurements of all state variables
are readily available, i.e. the system at hand is fully observable.

Discovery of differential equations with direct simulation. To address the limitations
of numerical differentiation, we introduce an approach to ODE discovery based on simulating
differential equations. During each step of parameter estimation, we must compute the error of
the candidate equation with a given set of parameter values. To obtain this, we solve the initial-
value problem by performing a full simulation of the system of ODEs, using the LSODA algorithm
implemented in the function odeint from the SciPy library. We define the error as the root-
mean-squared error of the simulated trajectory, with respect to the true trajectory of the observed
variables. In other words, we minimize the error

L =

√√√√ 1

|Uobs| · n
∑

u∈Uobs

n∑
i=1

(u(ti)− û(ti))2, (12)

where Uobs is the set of all observed variables, u(ti) represents the observed value u at time ti, û(ti)
represents the corresponding simulated value (i.e., the value obtained by simulating the candidate
equation), and n is the number of observed time points.

Background knowledge. ProGED uses Monte-Carlo sampling to search the space of possible
systems of ODEs. Since this search is not guided, the method works best when the search space
is as constrained as possible. Generally, the search space is constrained based on various types
of background knowledge, from general modeling principles, such as the parsimony principle, to
domain-specific or even problem-specific knowledge. ProGED employs PCFGs as a robust and
powerful framework for expressing different types of background knowledge and imposing both hard
constraints (through the PCFG structure) and soft constraints (through production probabilities).

In this study, we aim to discover models of dynamical systems, which already provides some
background knowledge in itself. To demonstrate how background knowledge can be expressed with
PCFGs, we detail some of the background knowledge for modeling dynamical systems and design
a grammar that expresses the general knowledge as follows:

1. A dynamical system is described by a system of 1st-order ODEs,

2. the right-hand side of each ODE is a linear combination of terms,

3. since each term has its own multiplicative numerical constant, there is no need to include the
subtraction operation,

4. terms are most commonly low-order monomials of state variables,

5. rarely, trigonometric functions appear, in particular sine and cosine,

6. the arguments of trigonometric functions tend to be linear functions of state variables and/or
time,

7. rarely, terms can be rational functions,

8. the terms in the numerator and denominator of rational functions tend to be low-order
polynomials,
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9. numerical constants can appear in trigonometric and rational functions, making the expres-
sions nonlinear in parameters.

We present a PCFG that expresses this background knowledge for modeling dynamical systems
in Table 4. The grammar has three production rules for the starting symbol E (expression), which
generate the sum of a number of terms, which are either ordinary terms derived by T , or rational
functions in the form of T/D. The two productions for D (denominator) derive the denominator
of a rational function as a sum of terms. The productions for T (term) generate a monomial,
composed of variables and/or trigonometric functions. The productions for R and M derive the
trigonometric factors as the sine or cosine of a product of state variables. Finally, the production
rules for V generate state variables. The presented grammar generates expressions, following
the domain knowledge above. A system of ODEs is composed by independently generating an
expression for the right-hand side of each ODE in the system.

Table 4. An example of a generic grammar for mathematical expressions appearing in models of dynamical
systems, used to generate the right-hand sides of ODEs. Production rules with the same nonterminal on the
left-hand side are separated by a vertical line (|). The probability of each production rule is given in square
brackets. The grammar can generate expressions (E) involving linear combinations of multiplicative terms (T ),
composed by multiplying variables (V ) or trigonometric terms (R). Trigonometric terms include sines and cosines
of monomials (M) of the state variables (V ). Moreover, the grammar can generate expressions involving the
division of linear combinations of multiplicative terms (T ) with terms in the denominator (D), where D can be a
linear combination of terms T . The example grammar refers to a system with two state variables, x and y, but can
be easily extended to an arbitrary number of state variables by adding new production rules to the nonterminal V .

N = {E,D, T,R,M, V }
T = {+, ∗, /, sin, cos, (, ), c, x, y}
R =

E → E + T [0.6] | T/(D) [0.15] | T [0.25]

D → D + T [0.5] | T [0.5]

T → T ∗ V [0.3] | T ∗R [0.1] | c [0.6]
R→ sin(M) [0.5] | cos(M) [0.5]

M → M ∗ V [0.5] | c [0.5]
V → x [0.5] | y [0.5]

S = E

The choice of probabilities in the PCFG warrants discussion as well, since it allows us to
express soft constraints on the space of equations and decide the level of parsimony of generated
expressions. In the grammar in Figure 4, we set the probability of recursion in the rules for E
relatively high (0.6), in order to generate expressions with several terms. On the other hand, the
probability of recursion in the production rules for T is lower (0.3 + 0.1 = 0.4), as we prefer lower-
order terms. We set the probabilities of rational functions (0.15) and trigonometric functions (0.1)
low to reflect their relative rarity in models of general dynamical systems. We set the probabilities
in the presented grammar based on past experience with modeling dynamical systems, as well as
by generating samples of random expressions and observing their properties.
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The presented grammar is designed to constrain the space of expressions as much as possible,
while still describing most dynamical systems. Nevertheless, some dynamical systems may be
described by systems of ODEs that fall outside the space described by this grammar, which would
preclude their discovery with ProGED. This risk is common when using hard constraints in equation
discovery. On the other hand, the presented grammar still generates many types of expressions,
including the entire class of rational functions.More limited grammars can be designed to describe
more specific types of dynamical systems by altering the grammar rules and their probabilities.
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Table 5. Description of ten dynamical systems, including their model (system of ODEs), the parameters we have
chosen for each system, and the number of terms present in each ODE.

System name System model Chosen parameters # Terms

bacterial
respiration
(bacres)

ẋ = B − x− xy
qx2+1

ẏ = A− xy
qx2+1

A = 10, B = 20,
q = 0.5

(3, 2)

bar magnets
(barmag)

ẋ = K sin(x− y)− sin(x)

ẏ = K sin(y − x)− sin(y)
K = 0.5 (2, 2)

coupled phase
oscillator
(cphase)

ẋ =W (t) +A sin(x) +B sin(y)

ẏ = C sin(x) +D sin(y) + E

W (t) = 2−
−0.5 sin(2π · 0.0015t),
A = B = 0.8, C = 0,
D = 0.6, E = 4.53

(4, 2)

glider
ẋ = − sin(y)−Dx2

ẏ = − cos(y)
x + x

D = 0.05 (2, 2)

Lorenz
oscillator
(lorenz)

ẋ = σ(y − x)

ẏ = x(ρ− z)− y

ż = xy − βz

σ = 10, ρ = 28,
β = 8

3

(2, 3, 2)

Lotka-
Volterra
(lv)

ẋ = x(A− x−By)

ẏ = y(C − x− y)
A = 3, B = 2,
C = 2

(3, 3)

Van der Pol
(vdp)

ẋ = y

ẏ = −x− µ(x2 − 1)y
µ = 2 (1, 3)

predator-prey
(predprey)

ẋ = x(b− x− y
1+x )

ẏ = y( x
1+x − ay)

b = 4, a = 0.075 (3, 2)

shear flow
(shearflow)

ẋ = cot(y) cos(x)

ẏ = (cos2(y) +A sin2(y)) sin(x)
A = 0.1 (1, 2)

Stuart-
Landau (stl)

ẋ = ax− ωy − x(x2 + y2)

ẏ = ωx+ ay − y(x2 + y2)
a = 1, ω = 3 (4, 4)

4.5.3 Experimental evaluation

We conduct a detailed experimental evaluation of the developed approach on ten dynamical systems,
with small and large datasets. We consider three levels of noise (no noise, low noise and high
noise). The experimental evaluation is performed separately under full and partial observability.
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We compare ProGED to four major competitors, DSO and SINDY for full observability, GPoM
and L-ODEfind for partial observability. We use three different performance measures to compare
the different ODE discovery methods.

Data. The benchmark we used for evaluation contains trajectories of ten dynamical systems,
which describe the temporal evolution of the state variables of each system. Models of the ten
dynamical systems are shown in Table 5. Seven out of the ten systems come from the Strogatz
benchmark, while three are introduced by ourselves. The data we have created for the purpose of
the evaluation are described in the section on SW and data release (Dynobench benchmark).

Dynobench includes coarse data of only 100 time points sampled at 0.1 Hz (called ”small data”).
Additionally, we created densely sampled data with 2000 time points, sampled at 0.01 Hz (called
”large data”). Each system of ODEs was simulated four times, each time with a different set of
initial values of the state variables. We also evaluated the methods on clean (noise-free) data, noisy
data with a 30 dB signal-to-noise ratio (SNR), where the signal was a thousand times stronger
than the noise, and data with a 13 dB SNR (signal twenty times stronger than noise).

Background knowledge. The use of background knowledge is an important aspect of equa-
tion discovery, but can be difficult to take into account in comparative benchmark experiments.
To facilitate its use, we equip the problems in Dynobench with explicit background knowledge. We
classify each of the ten dynamical systems into one of three classes that describe its type and define
background knowledge for each of the three classes (see the Appendix of the paper):

1. State oscillators and population models include systems lv, predprey, vdp, stl, lorenz
(see Table 5). The right-hand sides of the ODEs for these systems are polynomials, most
commonly composed of two or three terms. The terms are monomials of the state variables,
typically of order 1-3. An exception that often appears in population models is the Monod
term (fraction of the form V

V+c . Interaction terms (terms involving two or more state vari-
ables) often appear in the same form in more than one ODE in the systems of ODEs. systems,
To find ODEs for this group of systems we created a grammar for state oscillators.

2. Phase oscillators include the systems cphase and barmag. Phase oscillators are oscillatory
systems, which we observe through the phases of their state variables, instead of the state
variables themselves. Consequently, the right-hand sides of the ODEs are linear combinations
of trigonometric functions. Sine and cosine are the most common, but other trigonometric
functions may appear as well. The functions may be phase-shifted, which is realized by an
additive constant in the function’s argument. The arguments of the trigonometric functions
tend to be linear functions of the phase variables.

3. Finally, general dynamical systems include bacres, glider and shearflow. Systems that do
not fall into any of the previous two classes tend to follow the general background knowledge
for modeling dynamical systems and the grammar shown in Figure 4.

Full and partial observability. To assess the system identification performance of ProGED
on fully observable systems, we compared it to the DSO and SINDy methods on the Dynobench
benchmark. When evaluating each method, we have done two experiments. First, we tried to use
as much of the available background knowledge as possible and second, we left the model search
space unconstrained. The first experiment was named constrained and second unconstrained. The
configuration of each method is described in Section 4.3 of the paper.

In the partial observability scenario, we compared ProGED with two other methods, L-ODEfind
and GPoM, which are capable of handling partially-observed dynamical systems, unlike DSO and
SINDy. We chose to test on only the vdp model, which was best reconstructed under full observabil-
ity, as the identification under partial observability is a challenging task. Moreover, the vdp model
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includes only terms with linearity in parameters and can thus be reconstructed by L-ODEfind and
GPoM. To create a scenario with partial observability, we simply removed the time-series data
for one of the two state variables, depending on which one was observed, resulting in incomplete
knowledge of the system’s dynamics. We tested the performance of each method by varying the
level of data coarseness and noise. The particular settings of each method are described in Section
4.4 of the paper.

Performance measures. We compared the results of the different methods with three metrics
that quantify either the accuracy of the reconstruction or the complexity of the resulting expression.
The primary metric that was used for model selection, was the trajectory error, calculated on train,
validation and test sets. We calculate it, for a given state variable u, by using the relative-root-
mean-square-error

TEu =

√√√√√√√
n∑

i=1

(u(ti)− û(ti))2

n∑
i=1

(u(ti)− u)2
, (13)

where u(t) and û(t) denote the simulated values of the state variable u at time point t, computed
using the true model and the reconstructed model, respectively. The u is the mean value of u(t)
in the data obtained by simulating the true model. We define the total trajectory error as the sum
over all the state variables u in the system of equations, TE =

∑
u

TEu. Lower trajectory error
means better reconstruction of systems’ dynamics.

The second metric we used was the normalized term difference (TD), defined as the sum of the
number of missing terms and the number of wrong terms in the reconstructed system, divided by
the number of true terms:

TDu =
Nu,missing +Nu,wrong

Nu,true
(14)

Here, Nu,missing is the number of terms that are missing from the reconstructed differential equation
for the state variable u in the system of equations. The number of wrong terms Nu,wrong is the
number of terms that are not present in the true differential equation and the Nu,true is the number
of true terms. We define the term equivalently to a summand, which is an individual part of the
expression, separated by addition or subtraction. Again, the total TD was calculated as the sum
over all the state variables u in the system of equations, TD =

∑
u

TDu.

The third measure of the reconstruction success was the normalized complexity (NC), which is
calculated as the number of nodes in the expression tree of a reconstructed equation divided by
the number of nodes in the expression tree of a true system’s equation:

NCu =
Nu,nodes in reconstr
Nu,nodes in true

. (15)

The NC of a system of equations was considered as the sum of the NCu of the individual equations
of state variables u in the model. NC is best at 1, where the complexity of the true and reconstructed
model are equal. We included NC to complement TD. The NC metric is commonly used in research
due to its straightforward calculation. Nevertheless, TD provides a more informative measure of
accurate reconstruction. Even if NC is equal to 1, TD can still take nonzero values, implying the
existence of erroneous terms in the reconstruction models. However, when TD is equal to 0, NC
should also be 1.

The performance of the methods was statistically evaluated in terms of their trajectory error
for each system by using a critical difference diagram. The critical difference measure includes the
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Friedman test with corresponding post-hoc Wilcoxon tests for pair-wise comparison between the
methods. Statistical results were corrected for multiple comparisons using Holm’s method. We
performed the statistical evaluation separately on six dependent configurations, consisting of pairs
of the three SNR values and the two data types (small and large data). The statistical tests were
applied in both, the constrained and unconstrained model space under full observability.

Figure 8. Comparison of the trajectory error (top row), normalized term difference (middle row) and normalized
complexity (bottom row) for the ProGED, DSO and SINDy methods, colour-coded as shown in the legend. The
left-hand side plots correspond to results on the small data and the right-hand side plots to results on the large
data. Each subplot compares performance on data with different noise/SNR levels: clean data, 30 dB and 13 dB.
Each boxplot represents the distribution of performance over the ten dynamical systems. The black diamonds
represent outliers. The red numbers denote the number of successful identifications when some out of the 10
system identifications failed (only in SINDy). Note that TE is shown on a logarithmic scale. The dashed
horizontal line at TE = 1 represents the threshold, which can be seen as a minimum requirement for good
performance. The line at NC = 1 represents the optimal complexity value. The optimal value for TD is 0. One
value for SINDy was too small to fit on the plot, so the boxplot was truncated and the value is instead displayed
numerically at the end of the whisker.

4.5.4 Results and discussion

The comparative evaluation of ProGED and its comparison to competitors involved the recon-
struction of known ODEs from given data of various levels of coarseness, noise, and observability.
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This allowed the assessment of the methods’ robustness, as well as their strengths and limitations
related to their applicability to practical tasks of modeling dynamical systems from data. The
methods were tested on an updated and extended version of the Strogatz benchmark that consists
of ten dynamical systems. Three different performance measures were considered.

We first discuss the resuts of the evaluation of ProGED and its comparison with competitors
for the full observability scenario. These results are summarized (for models spaces constrained
by the specified grammars) in Figure 8. Each of the three panels of the Figure corresponds to one
of the performance measures.

Figure 9. Comparison of the performance of three ODE discovery methods under partial observability, with each
method colour-coded according to the legend. The top row displays the trajectory error (TE) on a logarithmic
scale, the middle row the term difference (TD) and the bottom row the normalized complexity (NC). The graphs
are arranged into two columns based on data length, as indicated by the subtitles. On the x-axes, the results are
hierarchically grouped by SNR (clean, 30 dB, 13 dB) and by the observability modes: full observability (labelled as
xy), observability in only the x variable (labelled as x), and observability in only the y variable (labelled as y).
Since only one system (vdp) was tested in the partially observed setting, error bars are not included. The dashed
horizontal line at TE = 1 represents the threshold/ minimum requirement for good performance, while the line at
NC = 1 represents the optimal complexity value. The optimal value for TD is 0.

46



The results show that the reconstruction on clean, large data as expected outperformed all
the other configurations (see the first group of three boxplots in the top right subplot). All three
methods had a median TE of around 10−2 in this configuration, as well as the lowest TD, meaning
that they made the least reconstruction mistakes. This is because noise-free, higher-resolution data
is an ideal scenario, especially for methods that rely on numerical differentiation.

Both the presence of noise and the data size/granularity notably influenced the methods’ per-
formance. A comparison of the TE on the clean, small data with the TE on the moderately noisy
(30 dB SNR) but large data reveals that moderate noise had a more pronounced effect on TE in
all three methods. However, the TD and NC metrics present a somewhat different picture. There
were more erroneous terms when provided with small, clean data as compared to large, moderately
noisy data. One plausible explanation for this discrepancy is that noise has a more substantial
effect on parameter estimation, influencing TE more, as compared to the effect on the actual
structure selection algorithm.

The assessments on highly noisy data (13 dB SNR) unsurprisingly yielded the poorest results,
irrespective of data size/granularity. The TE was around or above 1 for all methods, and, on
average, the reconstructed models contained more than twice the number of incorrect or missing
terms compared to the terms in the true model.

ProGED performed best in terms of all three metrics for clean data of both sizes. For data
with noise, DSO performed best, but the differences in performance were not significant. SINDY,
on the other hand, does perform much worse than both DSO and ProGED.

In the partial observability scenario, we considered only the vdp system for reconstruction.
Three different observability settings were included, where both variables (xy) or only one variable
(x and y) were observed. The results are shown in Figure 9. In our discussion, we focus only on
the results from the large dataset.

As expected, the reconstruction performance under partial observability decreases with decreas-
ing SNR. On clean, large data, all the methods showed relatively good reconstruction of dynamics
under at least one of the two partial observability settings. However, only ProGED was able to
reconstruct vdp under the moderate SNR of 30 dB. Interestingly, while ProGED performed sim-
ilarly under both partial observability settings (when either x or y were observed), GPoM and
L-ODEfind showed a bigger discrepancy and performed well when only x was observed, but not
when only y was observed.

Effects of data coarseness. All the methods performed (more) poorly when applied to a
small/coarse dataset containing only 100 data samples, sampled at 0.1 Hz. Conversely, as an-
ticipated, the reconstruction of model dynamics improved significantly when the methods were
applied to larger/finer datasets (2000 data points, sampled at 0.01 Hz). We highlight this point
given the common usage of benchmarks which include a limited number of data samples: The
performance of ODE discovery methods should also be tested on larger data samples. The length
and the sampling rate of the large data we used are still well within the range of common sets of
measurements in real-world experiments.

Effects of noise. As expected, the measurement noise greatly affects the ability to identify
an underlying dynamical system. The evaluated methods had great difficulties when the signal-to-
noise ratio (SNR) was the lowest. Interestingly, when the SNR was moderate, noise had relatively
more influence on the results under full observability than the influence of data size and coarseness.
Under partial observability, data coarseness had a greater influence on the results as compared to
the influence of SNR. This was to some degree anticipated, as the methods employing numerical
differentiation (used under full observability) would demonstrate a higher drop in performance
when exposed to noisy data, as compared to the methods that use simulation of ODEs (which is
necessary under partial observability).

Computational complexity. Lastly, while methods that rely on the polynomial structure

47



(GPoM) or linearity in parameters (SINDy, L-ODEfind) perform fast and sufficiently well for some
systems, ProGED and DSO are able to generate and identify much larger spaces of possible ODE
models. This comes at the cost of longer running times. The response time of reconstruction
experiments can be greatly reduced through extensive parallel implementation, particularly in the
case of ProGED. Alternatively, the speed of ProGED can be further increased by using more
restricted grammars in practical applications where domain knowledge is available.

4.5.5 Relevant publication

• Nina Omejc, Boštjan Gec, Jure Brence, Ljupčo Todorovski, Sašo Džeroski. Probabilistic
grammars for modeling dynamical systems from coarse, noisy, and partial data. Machine
Learning, 2024. DOI: 10.1007/s10994-024-06522-1.

4.5.6 Software and datasets availability

All methods used in the experiments are available online, in the respective GitHub repositories.
Our ProGED SW is available from the Github repository https://github.com/brencej/ProGED.
Additionally, we provide our code by which we obtained the presented results. It is located on the
Github repositoty: https://github.com/NinaOmejc/symreg_methods_comparison.

We have also released the data we used for evaluation, which contains trajectories of ten dynam-
ical systems, which describe the temporal evolution of the state variables of each system. Seven
out of the ten systems come from the Strogatz benchmark, currently widely used for system iden-
tification. Due to several limitations and problems encountered with this benchmark, we have
improved/ extended it in two ways.

First, we added models of three new dynamical systems: a model of coupled phase oscillators
(cphase); the Stuart-Landau (stl) oscillator (a normal form of a Hopf bifurcation); and the Lorenz
chaotic oscillator (lorenz), which have often been used in system identification experiments and
add some variety to the benchmark set of dynamical systems. The system cphase, for example,
introduces time dependency on the right-hand side, a property of non-autonomous systems, while
lorenz contains three state variables.

We generated the trajectories by directly simulating the models using the LSODA algorithm,
as the data from the Strogatz benchmark did not provide adequate accuracy for certain dynam-
ical systems. Moreover, the Strogatz benchmark contains trajectories with only 100 time points,
sampled at a 0.1 Hz rate. The coarse sampling of data can significantly affect the performance of
system identification methods. For example, some oscillators do not yet complete their limit cycles
during this period, so their main characteristic stays hidden. For these reasons, we have decided to
improve upon the Strogatz benchmark and make our extended benchmark available on the digital
repository Zenodo under the name Dynobench 10.5281/zenodo.10041312.

Analogously to the Strogatz benchmark, Dynobench includes coarse data of only 100 time
points sampled at 0.1 Hz (hereafter called ”small data”). Additionally, we created densely sampled
data with 2000 time points, sampled at 0.01 Hz (hereafter called ”large data”). Each system of
ODEs was simulated four times, each time with a different set of initial values of the state variables.
Python code for the simulation of dynamical systems is included in the Dynobench repository.

Besides clean (noise-free) data, we also provide noisy data with a 30 dB signal-to-noise ratio
(SNR), where the signal was a thousand times stronger than the noise, and data with a 13 dB SNR
(signal twenty times stronger than noise). We added Gaussian noise Unoise[V ] ∼ N (0,

√
Pnoise[W ]),

with mean µ = 0 and standard deviation σ2 =
√
Pnoise[W ]. The Pnoise[dB] was calculated based

on the power of the signal and the desired SNR, following Pnoise[dB] = Psignal[dB]− SNR[dB].
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4.5.7 Next steps

We are currently pursuing several directions for further work. At the top of the list is increasing
the number of systems and systems’ trajectories used for the evaluation of the approach, which
would provide more reliable evaluations and higher statistical power of the tests applied in this
context. This is especially true for evaluation under partial observability.

Context free grammars (and their probabilistic version, PCFGs) have limitations in expressing
domain knowledge. We are considering the use of probabilistic attribute grammars, which allow
us to capture context dependencies. In attribute grammars, symbols can have attributes and
production rules can have attribute rules, which impose constraints. We thus need more elaborate
sampling algorithm than for PCFGs.

Finally, we are considering a sampling procedure of Bayesian nature. Here the probabilities of
the rules of the PCFG would be updated as equation structures are sampled and evaluated (after
the parameters in the equation structures are fitted). This would allow focusing the search in
promising regions of the space of equation structures.
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5 Task 1.4: AI for Fast Approximation of Scientific Compu-
tations

5.1 Overview
In many computational problems relating to sustainability we face bottlenecks. Often we are able
to simulate systems, but we are not able to do so at the scale that is needed to solve the problem
at hand. This is a challenge in climate modelling, one must resolve physical processes and land-
atmosphere-ocean interactions in 3D grid data. Likewise, materials design problems often require
computations in statistical physics such as those based on density functional theory, for a very
large set of candidate materials.

This task aims expand the scale at which we can perform scientific computation by developing
AI-based surrogate methods that can provide fast approximations to expensive numerical compu-
tations. A common challenge in developing ML-based surrogates is that it is generally difficult to
create a large training dataset when each data point itself requires an expensive numerical simula-
tion. A key question in developing such methods is therefore how we can train surrogate models
that are suitable to large-scale simulation from data from smaller-scale gold-standard simulations.

In the next Section, we present an example of such approaches, in which develop neural methods
for classical density functional theory, a class of computationally efficient methods for simulating
fluids at mesoscopic scales, which can be trained on data from small-scale Monte Carlo simulations.
As noted previously, this work is closely related to the work in T1.2. The eventual use case of
these methods is to enable applications in materials design.

5.2 Neural Density Functionals for Materials Design
Contributing partner: UvA

5.2.1 Project Description

Background. Designing new materials often requires screening of a large set of candidate mate-
rials. While individual materials can be simulated with Monte Carlo (MC) or molecular dynamics
(MD) methods, it is simply not feasible to perform such simulations for all candidate materials.
An example is the screening of metal-organic frameworks (MOFs) for carbon capture applications.
Here the search space of candidate materials is very large; There are over 100k known MOF struc-
tures in the Cambridge Structural Database [99]. Evaluating the suitability of these candidate
structures therefore requires simulation methods that are several orders of magnitude faster than
their MC-based or MD-based counterparts.

Neural Classical Density Functional Theory. Density functional theory (DFT) expresses
observable quantities in quantum many body systems in terms of a functional of the electron
density. In statistical mechanics, classical density functional theory (cDFT), expresses the intrinsic
Helmholtz free energy as a functional of a particle density. Simulations based on cDFT are much
faster than MC or MD simulations, but to date application of cDFT has been somewhat held
back by the fact that the free energy functional can at best be computed approximately. Neural
approaches to cDFT sidestep the need for an analytical approximation by learning a parametric
approximation of the functional from a dataset of MC simulations.

More concretely, cDFT is a grand-canonical framework that expresses the grand potential Ω[ρ]
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as a functional of a particle density ρ(r),

Ω[ρ] = F [ρ] +

∫
drρ(r) (Vext (r)− µ) . (16)

Here F [ρ] represents the intrinsic Helmholtz free-energy functional, Vext(r) the external potential,
and µ the chemical potential.

For a given particle-particle interaction and temperature, the unique density functional F [ρ]
determines the thermodynamic and structural equilibrium properties of a system for any chemical
potential and external potential. Within cDFT, it is convention to split the intrinsic free-energy
functional into excess contribution and an ideal contribution that can be computed analytically,

Fexc[ρ] = F [ρ]−Fid[ρ], Fid[ρ] =
1

β

∫
dr ρ(r)

(
ln ρ(r)Λ3 − 1

)
, (17)

with β = 1/kBT and Λ the thermal wavelength.
Mathematical proofs exist [1] stating that (i) the equilibrium density profile, denoted here as

ρ0(r), minimizes Ω[ρ], and (ii) the equilibrium grand potential equals Ω[ρ0]. Clearly, once F [ρ] for
the system of interest is known, the Euler-Lagrange equation δΩ[ρ]/δρ(r)|ρ0 = 0 can be solved to
find ρ0(r) and Ω[ρ0]. The Euler-Lagrange equation takes the form

ρ0(r) =
1

Λ3
exp

(
βµ− β

δFexc[ρ]

δρ(r)

∣∣∣∣
ρ=ρ0

− βVext (r)
)
. (18)

This self-consistency relation can be leveraged to find ρ0(r) through recursive iteration.
While cDFT has tremendous potential as a method for fast simulation of many-body systems at

mesoscopic scales, realizing this potential poses challenges. The self-consistency iteration in cDFT
often converges in 10–100 steps, which means that equilibrium densities can be computed orders of
magnitude faster than in an equivalent MC or MD simulation. However to perform this iteration,
we need to compute the functional derivative δFexc[ρ]/δρ(r) of the excess free energy. Loosely,
the excess free energy describes the expected energy associated with two-body and multi-body
interactions in a system of particles. This is a quantity that is extremely difficult to compute, even
in approximation. Moreover, a new approximation is needed for each type of particle. This means
that applying cDFT to a range of application domains has proven difficult in practice.

In recent years, there has been a resurgence of cDFT developments facilitated by machine
learning (ML) methods, which employ virtually exact thermodynamic and structural data obtained
from explicit many-body simulations to learn data-driven representations of the excess free-energy
functional Fexc[ρ]. In the classical regime, the first machine-learned cDFTs focused on supercritical
Lennard-Jones fluids, for which explicit approximate functional forms for Fexc[ρ] were fitted to
density profiles in external fields obtained from simulations, both for 1D [64] and 3D systems
in planar geometry [93]. Recent work, once again leveraging simulations of density profiles in a
variety of external potentials, has shown that a neural approximation of the functional derivative
δFexc/δρ for hard-sphere systems outperforms existing approaches based on fundamental measure
theory (FMT) [141] in accurately estimating inhomogeneous density profiles.

Pair Correlation Matching. Our contribution to neural methods for cDFT is new objective
for training an approximate free energy functional, which we refer to as pair-correlation matching.
In pair correlation matching, we use MC simulations to obtain an estimate of the direct correlation
function c(2)(r, r′), which describes fluctuations relative to a constant equilibrium density in the
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Figure 10. 1. Bulk densities in planar geometry ρ(zi) = ρb and radial distribution functions g(r) are
sampled from Monte Carlo simulations of homogeneous bulk systems of Lennard-Jones particles. Each
g(r) is converted to the second functional derivative of the excess free-energy δ2Fexc/δρ(zi)δρ(zj) by
employing the Ornstein-Zernike equation. 2. Through automatic differentiation (autodiff2), the neural
functional F (2)

θ is optimized to fit the Hessian of the model output with respect to input density profiles to
δ2Fexc/δρ(zi)δρ(zj). 3. The optimized model can then be applied in cDFT to obtain non-uniform
equilibrium density profiles through automatic differentiation (autodiff) and the free energy F

(2)
θ for a

system of Lennard-Jones particles subjected to arbitrary external potentials.

absence of an external potential (i.e. Vext (r) = 0). The direct correlation function is related to the
second functional derivative of the excess free energy through

c(2)(r, r′) = −β δ2Fexc[ρ]

δρ(r)δρ(r′) . (19)

In pair correlation matching, we approximate the excess free energy functional Fexc[ρ] using a
neural network Fθ({ρi}) that accepts densities ρi := ρ(ri) on a grid of points {ri} as inputs. To
approximate the second functional derivative, we use automatic differentiaton compute the Hessian
with respect to ρ. We can then optimize with respect to the weights θ to match the Hessian of the
network to estimates of the correlation function based on MC simulations. In a simplified quasi
one-dimensional system, in which the density ρ(r) = ρ(z) and correlation function c̄(2)(|z − z′|)
vary only with a single cooridinate z, this leads to the loss function

L(θ) =
∑
i,j

(
c̄(2)(|z − z′|) + β

A(∆z)2
∂2F

(2)
θ

∂ρi∂ρj

)2

. (20)

Unlike previous ML approaches to cDFT [64], [93], [141], [151], pair correlation matching learns
a neural functional directly from radial distribution functions sampled from short simulations of
systems with constant density (illustrated in Figure 10). By contrast, many existing approaches
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Figure 11. Evaluation of neural free-energy functionals F
(1)
θ and F

(2)
θ , where F

(1)
θ is optimized by

matching inhomogeneous one-body densities and F
(2)
θ by pair-correlation matching in the homogeneous

bulk. a) Density profiles of a Lennard-Jones system in a planar geometry characterized by an external
potential (shown in gray) at a chemical potential of βµ = 0 obtained from DFT using F

(1)
θ and F

(2)
θ and

the mean-field approximation FMF
exc , along with the simulated density profile. b) Comparison of the

free-energy estimates using F
(1)
θ , F (2)

θ , and FMF
exc for the specific external potential shown in a), for the

same chemical potential of βµ = 0. c) Integrated absolute error (IAE) between density profiles obtained
from DFT using F

(1)
θ , F (2)

θ , and FMF
exc , along with the densities sampled from simulation. d) Absolute

error of the excess free energy from DFT and simulations. c)/d) Data is shown for 150 distinct external
potentials, evaluated across the range −4 < βµ < 6, with steps of ∆βµ = 0.1. The area of the mean ±
standard deviation is colored. The error is shown up to the point where the DFT iterations stop to
converge to a solution within 1000 iterations. e) The pressure and the chemical potential obtained from
DFT and simulations. f) The laterally integrated direct correlation function c̄

(2)
b (z) at ρbσ

3 = 0.62 and
the radial distribution function g(r) obtained from simulation and DFT.

have focused matching the first derivative to simulation data, which requires simulations of densities
with varying external potentials Vext(r). As a consequence, pair correlation matching has the
potential to substantially improve the data efficiency of neural methods for cDFT.

Results. To evaluate the accuracy of our neural excess free-energy functional F (2)
θ , we compare it

to the Van der Waals-like mean-field approximation FMF
exc , which treats the attractions of Lennard-

Jones particles as a perturbation on the hard-sphere system, as implemented in PyDFTlj [143]. We
use the White-Bear mark II version of FMT for the excess free energy of the hard-sphere system
[6]. Additionally, we compare to F (1)

θ , which is a neural functional trained by minimization of the
error between (1/∆z)∂F

(1)
θ /∂ρi and δFexc/δρ(zi) rather than by pair-correlation matching. This

neural functional is trained on a dataset of 800 non-uniform densities, subjected to the same set of
chemical potentials as before. By approximating δFexc/δρ(zi) by the gradient (1/∆z)∂F

(n)
θ /∂ρi

for n = 1 and 2, both neural functionals are applied in Picard iterations [10], [30], [45] to obtain
DFT estimates for the equilibrium density profiles of inhomogeneous systems according to Eq. (18).
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The DFT results for an exemplary external potential at βµ = 0 are shown in Figure 11a, where
we observe that the neural functionals F (1)

θ and F (2)
θ provide similar estimates, both outperforming

FMF
exc . For the same external potential, we evaluate the accuracy of DFT estimates for the free

energy for a range of chemical potentials −4 < βµ < 6 (Figure 11b). We compare with the excess
free energy obtained from GCMC simulations through thermodynamic integration. We observe
that both neural functionals outperform FMF

exc within the range of µ values in the training set,
exhibiting good agreement with the simulations. The DFT estimates are shown until the DFT
iterations diverge and errors become unmanageable. This reveals that F (1)

θ diverges rapidly when
extrapolating beyond the training set, even earlier than F exc

MF . In contrast, F (2)
θ is capable of

converging to a solution far beyond the trained µ range.
For a more detailed comparison for various inhomogeneous systems, we performed separate

DFT calculations for 150 distinct external potentials, evaluated across the range −4 < βµ < 6.
For both the density estimates (Figure 11c) and the free-energy estimates (Figure 11d), we observe
excellent agreement between the F (1)

θ and F (2)
θ functionals and simulated data. They demonstrate

similar performance for µ values within the training set range, and outperform the FMF
exc functional

for all evaluated external potentials (Figure 11). Again, we observe that F (2)
θ surpasses F (1)

θ when
extrapolating beyond the µ range encountered during training.

Conclusion and Next Steps. Our results suggest that pair correlation matching works much
better than one might expect. Using the direct correlation function as training data greatly sim-
plifies dataset generation. We can simply simulate systems at different levels of constant density,
and do not have to simulate systems in wide variety of external potentials, as in existing meth-
ods. A limitation of this approach is that correlation functions likely encode a particular class of
inhomogeneities. This may well not be sufficient to describe all phenomena in a physical systems,
so one might expect inaccurate predictions in certain regimes, such as near phase transitions or in
systems with very high densities. Yet, the extent to which a functional trained with pair correla-
tion matching can generalize to non-uniform densities is encouraging. The computational expense
of simulating systems with a variety of external potentials greatly increases as we move from the
quasi one-dimensional systems considered in this work to fully three-dimensional systems. Here
pair correlation matching provides an avenue for improving the data efficiency of neural cDFT
methods. This suggests that, with further development, these neural cDFT may well become a
viable method for fast simulation of complex phenomena, such as carbon capture in MOFs.

5.2.2 Relevant Publications

• J. Dijkman, M. Dijkstra, R. van Roij, et al., Learning Neural Free-Energy Functionals with
Pair-Correlation Matching, May 2024. doi: 10.48550/arXiv.2403.15007. arXiv: 2403.
15007 [cond-mat]

5.2.3 Relevant Use Cases

This work is relevant to use case 6, the open materials discovery competition.

5.3 Estimating the energy of Bi atoms configurations with machine
learning

Contributing partner: JSI
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5.3.1 Summary

Due to its interesting properties, bismuth (Bi) is increasingly relevant not just for materials science
but also for a range of other applications, including quantum computing. However, simulating
amorphous bismuth is computationally expensive because it requires DFT calculations with very
large supercells. Empirical force-field calculations would be much faster, yet they would be relevant
only if the utilized force field is sufficiently accurate.

Here, we propose a method for parametrizing a force field based on Machine Learning. We
trained a predictor (regressor) for Bi atoms configurations on several thousand DFT-calculated
configurations, ranging from 2 to 64 Bi atoms. We found it to provide a reasonable estimate of the
configuration’s energy at only a fraction of the DFT computational cost.

Bulk Bi configurations were generated using DFT (density functional theory) - based ab ini-
tio molecular dynamic (AIMD) simulations. The DFT calculations are performed with Quantu-
mESPRESSO (www.quantum-espresso.org). They used the Perdew-Burke-Ernzerhof (PBE) func-
tional, plane-wave kinetic energy cutoffs of 50 Ry (wavefunctions) and 400 Ry (charge density), as
well as structural relaxations (clusters) and AIMD (bulk structures).

Predictive models are built by different machine learning methods, including support vector
regression and neural networks. Features (descriptors) were generated by using the Dscribe package
(https://singroup.github.io/dscribe/latest/). In particular, the following descriptors were used:
MBTR (Multi-Body Tensor Representation), SOAP (Smooth Overlap of Atomic Orbitals), Sine
Matrix and inverse pairwise distance. The best results were achieved by using support vector
regression.

Our method is applicable to Bi configurations consisting of an arbitrary number of atoms and
can be extended to estimate other quantities of interest, such as forces. Although these results are
still preliminary, they open an avenue towards a practically useful force field for modeling arbitrary
Bi structures, including liquid and amorphous Bi.

5.3.2 Relevant publications

There are no as yet published papers or completed drafts submitted for publication describing the
above work. However, the work has been described in a poster presentations:

• Tone Kokalj, Matej Petković, Daniel Meljanac, Zoran Levnajić, Juan Jose Palacios, Sašo
Džeroski. Estimating the energy of Bi configurations with machine learning. 4th Workshop
on Machine Learning Modalities for Materials Science, Ljubljana, 13th-17th May 2024.).

5.3.3 Next steps

We are pursuing several directions for further work. One is the consideration of additional con-
figurations of Bismuth atoms, i.e., additional training examples (of which we had relatively few).
Another direction is the consideration of additional features (descriptors). Finally, we will consider
the use of additional machine learning methods.
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6 Task 1.5: Reducing the Energy Requirements of Compu-
tation

As the demand for AI continues to grow, the computational demand for machine learning solu-
tions is becoming increasingly large. The recent blooming of foundation models, that guarantee
generality and reduce deployment efforts through mechanisms like transfer learning and knowl-
edge distillation might apparently look a cheap and effective way, but hide the cost of maintaining
these large models even for simpler tasks. This evidently translates into progressively higher energy
consumption, posing both practical and conceptual issues.

It is a key challenge to find ways to make AI solutions more energy-efficient. In particular,
reducing the memory and computation power (and besides, reducing the environmental impact)
of these systems can be divided into three main challenges: training models with little data, using
limited computational resources for training these models, and deploying models that save energy.

6.1 Overview
Within this task, partners are contributing in the core challenge of how to reduce energy require-
ments of computation, tackling the problem from many different perspectives so that the advances
can be each other complimentary but aiming at the same goal. We will here below summarize at
a glance the contributions per partner.

In Subsection 6.2, IPP proposes the employment of low-rank approaches for structured pre-
diction. This contribution frames itself on one opposite side of deep learning, providing a frugal
learning shame with excess risk bounds. The same partner takes as well a complementary approach
by making complex CNNs shallow. In Subsection 6.3, IPP proposes EASIER, a simple yet effective
strategy to reduce the Deep Neural Network’s depth by iteratively removing irrelevant layers from
the model. This work frames itself in the typical deployment context where practitioners take off-
the-shelf architectures like ResNets and Vision Transformers and deploy for a specific downstream
task. In this work, IPP shows that all the computational complexity put at stake is not really
necessary, but can be sometimes massively reduced and adapted to the specific task to be solved.

In Subsection 6.4 and Subsection 6.5, IDEAS NCBR proposes its contributions in the context of
Zero-waste machine learning, in the contexts of knowledge accumulation and sustainable computer
vision for autonomous machines. Related to knowledge accumulation, IDEAS NCBR proposes
a Selective Ensemble of Experts for Continual Learning (SEED) that is able to mitigate the is-
sue of catastrophic forgetting, typical in continual learning scenarios, through the employment of
experts. Besides, in the same context IDEAS NCBR proposes EFCIL, an Exemplar-Free Con-
tinual Learning strategy, where catastrophic forgetting is avoided by using an adversarial sample
generation. Related to sustainable Computer Vision for autonomous machines, IDEAS NCBR pro-
poses a federated solution to contrastive learning-based solutions that refuses the total bandwidth
needed for the computation, through a Momentum-Aligned Contrastive Split Federated Learning
(MonAcoSFL) approach.

In Subsection 6.6, CERTH tackles the issues of both reducing the model’s complexity of learned
models through a Knowledge Distillation (KD) scheme, where a shallow student is learned, and to
make the whole KD scheme computationally efficient. CERTH accomplishes the second ambitious
objective by selecting a subset of relevant samples through which performing KD, leveraging on the
information content of these. Another parallel contribution from CERTH lies in making inference
computation efficient: in Subsection 6.7, a scheme where instead of training one large model an
ensemble of two shallower ones is deployed, is proposed. More specifically, “Two Heterogeneous
CNN” proposes to impose a differentiation in prediction between these two models, such that the
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two focus on more diverse features from the same input. This approach has the dual advantage of
both making computation demands lower and ensuring higher diversity in the feature extraction
process.

Finally, in Subsection 6.8 HPI employs the notion of low-precision Gaussian process regression
to decrease the power consumption of AI. This contribution comes timely, closer to the hardware
level, leveraging the knowledge that high-precision error-free computation, in many contexts, is
not strictly necessary. Through the employment of Gaussian processes-based models to leverage
approximate computing, HPI shows that massive power reduction is indeed possible with negligible
impact on the model’s performance.

6.2 Low-rank approaches in structured prediction
Contributing partner: IPP

The growing energy requirements for computational tasks, especially driven by AI solutions,
pose a core challenge to both environmental sustainability and operational efficiency [82], [124].
Within this context, we propose innovative methods to reduce the energy demands of complex
computational tasks. Leveraging the kernel trick in the output space, our research introduces
kernel-induced losses as a robust way to define structured output prediction tasks for various output
modalities. By integrating these techniques with deep neural networks, which are inherently more
expressive and powerful for handling inputs like images and texts, we aim to enhance computational
efficiency. Through this work, we demonstrate that it is possible to achieve state-of-the-art results
in structured prediction while simultaneously cutting down on energy consumption, making a
compelling case for its relevance and importance in sustainable AI development.

6.2.1 Technical Description

Kernel-induced losses provide a principled way to define structured output prediction tasks for a
wide variety of output modalities. In particular, they have been successfully used in the context
of Input Output Kernel Regression that solves a surrogate vector-valued regression problem where
the input and the output spaces are both Reproducing Kernel Hilbert Spaces. At inference time
the structured predictive model f̂ is obtained by decoding the infinite-dimensional output using
kernel trick. While offering SOTA performance on various Structured Prediction problems, these
methods suffer from two drawbacks: first, as with other kernel methods, output kernel regression
does not scale to large-size datasets, and second, they currently do not have a counterpart in
parametric modeling (e.g. neural networks), needed for dealing with images or text for instance.
We have developed two approaches to solve these issues.

In “Sketch in, Sketch out: Accelerating both learning and inference for structured prediction
with kernels”, we proposed to equip these methods with sketching-based approximations, applied to
both the input and output feature maps. Sketching is a well-known technique that allows to reduce
the computation time and space by leveraging random projections. The originality of this work
relies on the application of two random projection operators on the infinite dimensional input and
output feature maps, giving rise to the estimator depicted on the right in Figure ??. We proved
excess risk bounds on the original structured prediction problem, showing how to attain close-
to-optimal rates with a reduced sketch size that depends on the eigendecay of the input/output
covariance operators. We showed that the two approximations have distinct but complementary
impacts: sketching the input kernel mostly reduces training time, while sketching the output kernel
decreases the inference time. Empirically, our approach was shown to scale, achieving state-of-the-
art performance on benchmark data sets where non-sketched methods are intractable.
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Table 6. Comparison of Deep Sketched Output Kernel Regression (DSOKR) with different baseline on SMI2Mol
test set

GED w/o edge feature ↓

SISOKR 3.330± 0.080

NNBary-FGW 5.115± 0.129

Sketched ILE-FGW 2.998± 0.253

DSOKR 1.951± 0.074

With our second contribution, ”Deep Sketched Output Kernel Regression for Structured Predic-
tion”, we tackled the question of how to train neural networks to solve structured output prediction
tasks, while still benefiting from the versatility and relevance of kernel-induced losses. We designed
a novel family of deep neural architectures, whose last layer predicts in a data-dependent finite-
dimensional subspace of the infinite-dimensional output feature space deriving from the kernel-
induced loss. This subspace is chosen as the span of the eigenfunctions of a randomly approximated
version of the empirical kernel covariance operator obtained by sketching. Interestingly, this ap-
proach unlocks the use of gradient descent algorithms (and consequently of any neural architecture)
for structured prediction. Experiments on real-world supervised graph prediction problems show
the relevance of our method. Table 6 reports numerical results of DSOKR on the emblematic
task which consists of predicting a molecule from its symbolic representation SMILE. DSOKR is
compared to other structured prediction tools based on the minimization of Optimal Transport
losses as well as SISOKR, described above.

6.2.2 Relevant Publications

• El Ahmad, T., Brogat-Motte, L., Laforgue, P., & d’Alché-Buc, F, Sketch in, sketch out:
Accelerating both learning and inference for structured prediction with kernels, AISTATS
2024.

• Ahmad, T. E., Yang, J., Laforgue, P., & d’Alché-Buc, F. (2024). Deep Sketched Output
Kernel Regression for Structured Prediction. arXiv preprint arXiv:2406.0925, accepted in
ECML-PKDD 2024.

6.2.3 Relevant Software Releases / Datasets

• The implementation of our work ”Sketch In Sketch Out: Accelerating both Learning and
Inference for Structured Prediction with Kernels” can be found at https://github.com/t
amim-el/sisokr.

• The implementation of our work ”Deep Sketched Output Kernel Regression for Structured
Prediction.” can be found at https://github.com/tamim-el/dsokr.

6.2.4 Relevant Use Cases

The approach, described in Subsection 6.2, will be applied to the UC6 “Open Materials Discovery
Project”.
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6.3 Layer collapse
Contributing partner: IPP

Despite Deep Neural Networks having demonstrated scalability in terms of model and dataset
size, they hinder high computational demands. Indeed, neoteric architectures are made up of
millions, or even billions, of parameters, resulting in billions, or even trillions, of FLoating-point
OPerations (FLOPs) for a single inference [114]. The development of compression techniques,
which constitute an essential means of remedying the resource-hungry nature of DNNs, has marked
the research landscape over the past decade. It is well-known that the complexity of the model is
intrinsically linked to the generalizability of DNNs [40], and since pre-trained architectures that can
be used in downstream tasks tend to be over-parameterized, compression with no (or only slight)
performance degradation is in principle possible [120]. To design a more efficient architecture, a set
of methods has been proposed, ranging from parameter pruning [26] to the reduction of numerical
precision [36]. Nonetheless, few approaches are capable of lessening the number of layers in a
DNN. Indeed, removing single parameters or whole filters offers very few if any, practical benefits
when it comes to using the model on recent computing resources, such as GPU. Thanks to the
intrinsic parallel computation nature of GPUs or TPUs, the limitation on layer size, whether larger
or smaller, comes mainly from memory caching and core availability. Indeed, reducing the critical
path that computations must traverse [127] would help to relieve the DNN’s computation demand,
which can be achieved by strategically removing layers.

In the work that follows we have identified a simple yet effective strategy to reduce the depth
of deep neural networks, identifying the average state of a given rectifier-activated neuron for
the trained task. Given the definition of rectifier activation functions, our approach named after
EASIER can find the probability that this neuron uses one of the two regions, and hence can
calculate an entropy-based metric per layer. Such a metric is then used to drive the linearization
of layers toward neural network depth reduction.

6.3.1 Technical Description

Our proposed approach builds its foundations on top of recent research in the field that has already
shown that layers can naturally collapse if their parameters are properly pruned [149]. In order
to assess the layer’s collapse, we need to observe the output of all the neurons belonging to it,
identifying their “state”. In ReLU-activated networks, we can identify three of them, depending on
the sign of the pre-activation signal (hence, these can be +1 for the ON state, -1 for the OFF, and
0). We consider the “zero” state as a don’t care state: whether we are in the ON or in the OFF
state, if the pre-activation signal values exactly zero, the output will be zero in both cases. From
this, we can easily calculate (over the samples in the dataset) the probability (in the frequentistic
sense) of a target i-th neuron in the l-th layer of being in the ON state (and its complementary
OFF probability), used then to calculate the entropy for this neuron:

Hl,i = −
∑

sl,i=±1

p(sl,i) log2 [p(sl,i)] (21)

Given the definition in equation 21, Hl,i = 0 (which is the condition for neuron collapse) can be
verified in two cases:

• sl,i =−1 ∀j. In this case, the pre-activation signal is always negative or zero. The output of
the i-th neuron is always 0 when for example employing a ReLU.

• sl,i =+1 ∀j. In this case, the pre-activation signal is always positive or zero. As it belongs
to the linear region, the output of the i-th neuron is equal to its input (or very close as in
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Figure 12. Overview of EASIER. We iteratively train, evaluate, and estimate the entropy on the training set and
linearize the lowest-entropy layer of the neural network, until the performance drops.

GeLU). Therefore, since there is no non-linearity between them anymore, this neuron can in
principle be absorbed by the following layer.

To estimate one layer’s collapse, we can employ the average entropy: for the l-th layer counting
Nl neuron it is

Ĥl =
1

Nl

∑
i

Hl,i. (22)

We would like to have Ĥl = 0 since we target deep neural networks’ depth reduction by eliminating
layers with almost zero entropy.

At a glance, we assume that the lowest-entropy layer is the one likely to make the least use of
the different regions, or states, of the rectifier. Therefore, the need for a rectifier is there reduced:
the rectifier can be linearized entirely. In this regard, we first train the neural network and evaluate
it on the validation set. As defined in equation 22, we then calculate the entropy Ĥ on the training
set Dtrain for all the L rectifier-activated layers, (therefore, the output layer is excluded). We then
find the lowest entropy layer and replace its activation with a linear one. To recover the potential
performance loss, the model is then fine-tuned using the same training policy and re-evaluated on
the validation set Dval. The final model is obtained once the performance on the validation set
drops below the threshold δ. An overview on the method is provided in Figure 12.

The approach has been validated through a variety of architectures and datasets. We have
selected the architectures ResNet-18, MobileNet-V2, Swin-T and VGG-16, and trained on seven
datasets: CIFAR-10, Tiny-ImageNet, PACS and VLCS from DomainBed, as well as Flowers-102,
DTD, and Aircraft. All the hyperparameters, augmentation strategies, and learning policies are
provided in Appendix, mainly following [137] and [150]. For ResNet-18, MobileNetv2, and VGG-16
all the ReLU-activated layers are taken into account. For Swin-T, all the GELU-activated layers
are considered. We show here some results obtained on CIFAR-10 in Figure. Figure 13 shows
the test performance (Top-1) versus the number of removed layers for all the considered models
on CIFAR-10, achieved with our method EASIER, while Figure 14 studies the impact of EASIER
while employing diverse rectifiers. Interestingly, all the models exhibit a similar depth-accuracy
trend, regardless of their initial depth, and that except for the ReLU case, all the other rectifiers
collapse at a similar depth.

6.3.2 Relevant Publications

• V. Quétu, Z. Liao, and E. Tartaglione, The Simpler The Better: An Entropy-Based Impor-
tance Metric To Reduce Neural Networks’ Depth, ArXiv preprint arXiv:2404.18949, accepted

60



0 5 10 15 20 2530
Layers Removed

78

80

82

84

86

88

90

92

94

T
op

-1
[%

]

VGG-16

ResNet-18

Swin-T

MobileNetv2

Figure 13. EASIER applied on ResNet-18, VGG-16,
Swin-T and MobileNetv2 networks on CIFAR-10. For
each model, we gradually remove non-linear layers.
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Figure 14. EASIER applied on ResNet-18 on
CIFAR-10 with different rectifiers: ReLU, LeakyReLU,
PReLU, GELU, and SiLU. Our method is not bound to
a specific one and is effective with the most popular.

in ECML-PKDD 2024.

6.3.3 Relevant Software Releases / Datasets

• The Pytorch implementation of our work ”The Simpler The Better: An Entropy-Based Im-
portance Metric To Reduce Neural Networks’ Depth” can be found at https://github.com
/VGCQ/EASIER.

6.3.4 Relevant Use Cases

The developed tool, described in Subsection 6.3, can potentially be applied to any of the proposed
use cases, where an overparametrized deep neural network model is employed.

6.4 Continual Machine Learning and Knowledge Accumulation
Contributing partners: IDEAS, NCBR

This research addresses the challenge of catastrophic forgetting in neural networks by developing
methods for incremental learning without losing previously acquired knowledge. In zero-waste
machine learning, we consider knowledge accumulation and continual learning as key aspects of
training neural networks in an efficient way. In this stage of the project, we focus on exemplar-free
class-incremental learning (EFCIL) as one of the most challenging settings of continual learning [69],
[117], where the method cannot store any exemplars and during the inference the task is unknown,
and the network needs to correctly classify the object as one of the encountered class during the
continual learning session. In the last few years, multiple methods that focus mostly on catastrophic
forgetting have been proposed. In our work, we focus more on efficient knowledge accumulation
where the network can be trained from scratch, not from the already pre-trained network or from
the first task that has most of the data. We proposed two different EFCIL methods: Selective
Ensemble of Experts for Continual Learning (SEED) [140] and Adversarial Drift Compensation
(ADF) [148]. Both tackle the problem of EFCIL and outperform current state-of-the-art methods
in different ways in well-established class-incremental learning benchmarks.
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6.4.1 Technical description of the work

We consider the exemplar-free class-incremental learning (EFCIL) setup where new classes emerge
over time and we are not allowed to store samples from old classes. These classes come in different
tasks, one task at a time, and the tasks contain a mutually exclusive set of classes. When training
on task t, we have access to current dataset Dt = {Xt, Yt} with images Xt and labels Yt. The main
goal of EFCIL is to learn a model h that correctly classifies the data into classes encountered so
far. We use ht(x) = σ(Wtft(x)), where ft is the feature extractor parameterized by θt learned in
task t and Wt is weight matrix of the linear classifier with softmax function σ.

Multiple recent CIL methods that do not store exemplars rely on having a strong feature
extractor from the beginning of incremental learning. This extractor is trained on the larger first
task, which provides a substantial amount of data (i.e., 50% of all available classes) [63], [125],
[139], or it starts from a large pre-trained model that remains unchanged [76], [123] that eliminates
the problem of representational drift [85]. However, these methods perform poorly when little
training data is available upfront. In Figure 15, we illustrate both CIL setups, with and without
the more significant first task. The trend is evident when we have a lot of data in the first task -
results steadily improve over time. However, the progress is not evident for the setup with equal
splits, where a frozen (or nearly frozen by high regularization) feature extractor does not yield good
results. We focus on this more challenging setup as it requires the whole network to continually
learn new features (plasticity) and face the problem of catastrophic forgetting of already learned
ones (stability). We proposed two different methods: SEED [140] and ADF [148] that perform well
in the small-start setting.

Figure 15. Exemplar-free Class Incremental Learning methods evaluated on CIFAR100 divided into eleven tasks
for two different data distributions.

SEED Method. We introduce a novel ensembling method for exemplar-free CIL called SEED:
Selection of Experts for Ensemble Diversification. Similarly to CoSCL and [113], SEED uses a
fixed number of experts in the ensemble. However, only a single expert is updated while learning
a new task. That, in turn, mitigates forgetting and encourages diversification between the experts.
While only one expert is being trained, the others still participate in predictions. In SEED, the
training does not require more computation than single-model solutions. The right expert for the
update is selected based on the current ensemble state and new task data. The selection aims
to limit representation drift for the classifier. The ensemble classifier uses multivariate Gaussian
distribution representation associated with each expert (see Figure 16). At the inference time,
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Figure 16. SEED comprises K deep network experts gk ◦ f (here K = 2), sharing the initial layers f for higher
computational performance. f are frozen after the first task. Each expert contains one Gaussian distribution per
class c ∈ C in his unique latent space. In this example, we consider four classes, classes 1 and 2 from task 1 and
classes 3 and 4 from task 2. During inference, we generate latent representations of input x for each expert and
calculate its log-likelihoods for distributions of all classes (for each expert separately). Then, we softmax those
log-likelihoods and compute their average over all experts. The class with the highest average softmax is
considered as the prediction.

Bayes classification from all the experts is used for a final prediction. As a result, SEED achieves
state-of-the-art accuracy for task-aware and task-agnostic scenarios while maintaining the high
plasticity of the resulting model under different data distribution shifts within tasks.

The core idea of our approach is to directly diversify experts by training them on different
tasks and combining their knowledge during the inference. Each expert contains two components:
a feature extractor that generates a unique latent space and a set of Gaussian distributions (one
per class). The overlap of class distributions varies across different experts due to disparities in
expert embeddings. SEED takes advantage of this diversity, considering it both during training
and inference.
Architecture. Our approach, presented in Figure 16, consists of K deep network experts gk ◦ f for
k = 1, . . . ,K, sharing the initial layers f for improving computational performance. f are frozen
after the first task. We consider the number of shared layers a hyperparameter (see Appendix ??).
Moreover, each expert k contains one Gaussian distribution Gc

k = (µc
k,Σ

c
k) per class c for its unique

latent space.
Algorithm. During inference, we perform an ensemble of Bayes classifiers. The procedure is
presented in Figure 16. Firstly, we generate representations of input x for each expert k as
rk = gk ◦ f(x). Secondly, we calculate log-likelihoods of rk for all distributions Gc

k associated with
this expert

lck(x) = −
1

2
[ln (|Σc

k|) + S ln (2π) + (rk − µc
k)

T (Σc
k)

−1(rk − µc
k)], (23)

where S is the latent space dimension.
Then, we softmax those values l̂1k, . . . , l̂

|C|
k = softmax(l1k, . . . , l

|C|
k ; τ) per each expert, where C is the

set of classes and τ is a temperature. Class c with the highest average value after softmax over all
experts (highest Ek l̂ck) is returned as a prediction for task agnostic setup. For task aware inference,
we limit this procedure to classes from the considered task.

Our training assumes T tasks, each corresponding to the non-overlapping set of classes C1 ∪
C2 ∪ · · · ∪ CT = C such that Ct ∩ Cs = ∅ for t ̸= s. Moreover, task t is a training step with only
access to data Dt = {(x, y)|y ∈ Ct}, and the objective is to train a model performing well both for
classes of a new task and classes of previously learned tasks (< t).

The main idea of training SEED, as presented in Figure 17, is to choose and finetune one expert
for each task, where the chosen expert should correspond to latent space where distributions of
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new classes overlap the least. Intuitively, this strategy causes latent space to change as little as
possible, improving stability.

Figure 17. SEED training process for K = 2 experts, T = 3 tasks, and |Ct| = 2 classes per task. When the third
task appears with novel classes C3, we analyze distributions of C3 classes (here represented as purple
distributions) in latent spaces of all experts. We choose the expert where those distributions overlap least (here,
expert 2). We finetune this expert to increase the separability of new classes further and move to the next task.

To formally describe our training, let us assume that we are in the moment of training when
we have access to data Dt = {(x, y)|y ∈ Ct} of task t for which we want to finetune the model.
There are two steps to take, selecting the optimal expert for task t and finetuning this expert.

Expert selection starts with determining the distribution for each class c ∈ Ct in each expert k.
For this purpose, we pass all x from Dt with y = c through deep network gk ◦ f . This results in a
set of vectors in latent space for which we approximate a multivariate Gaussian distribution qc,k.
In consequence, each expert is associated with a set Qk = {q1,k, q2,k, ..., q|Ct|,k} of |Ct| distributions.
We select expert k̄ for which those distributions overlap least using symmetrized Kullback–Leibler
divergence dKL:

k̄ = argmax
k

∑
qi,k,qj,k∈Qk

dKL(qi,k, qj,k). (24)

To finetune the selected expert k̄, we add the linear head to its deep network and train gk̄ using
Dt set. As a loss function, we use cross-entropy combined with feature regularization based on
knowledge distillation [35] weighted with α: L = (1−α)LCE+αLKD, where LKD = 1

|B|
∑

i∈B ||gk̄◦
f(xi)− goldk̄

◦ f(xi)||, B is a batch and gold
k̄

is frozen gk̄.
While we use CE for its simplicity and effective clustering [62], it can be replaced with other

training objectives, such as self-supervision. Then, we remove the linear head, update distributions
of Qk̄, and move to the next task.

Due to the random expert initializations, we skip the selection procedure for K initial tasks and
omit LKD. Instead, we select the expert with the same number as the number task (k = t) and
use L = LCE . For the same reason, we calculate distributions of new tasks only for the experts
trained so far (k ≤ t). Finally, we fix f after the first task so that finetuning one expert does not
affect others.

Tab. 7 presents the comparison of SEED and state-of-the-art exemplar-free CIL methods for
CIFAR-100, DomainNet, and ImageNet-Subset in the equal split scenario. We report average
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incremental accuracies for various split conditions and domain shift scenarios (DomainNet). We
present joint training as an upper bound for the CL training.

SEED outperforms other methods by a large margin in each setting. For CIFAR-100, SEED
is better than the second-best method by 14.7, 17.5, and 15.6 percentage points for T = 10, 20, 50,
respectively. The difference in results increases as there are more tasks in the setting. More
precisely, for T = 10, SEED has 14.7 percentage points better accuracy than the second-best
method (LwF*, which is LwF implementation with PyCIL [105] data augmentations and learning
rate schedule). At the same time, for T = 50 SEED is better by 15.6%. The results are consistent
for other datasets, proving that SEED achieves state-of-the-art results in an equal split scenario.
Moreover, based on DomainNet results, we conclude that SEED is also better in scenarios with a
significant distributional shift.

Table 7. Task-agnostic avg. inc. accuracy (%) for equally split tasks on CIFAR-100, DomainNet and
ImageNet-Subset. The best results are in bold. SEED achieves superior results compared to other methods and
outperforms the second best method (FeTrIL) by a large margin.

CIL Method CIFAR-100 (ResNet32) DomainNet ImageNet-Subset

T=10 T=20 T=50 T=12 T=24 T=36 T=10

Finetune 26.4±0.1 17.1±0.1 9.4±0.1 17.9±0.3 14.8±0.1 10.9±0.2 27.4±0.4
EWC [42] (PNAS’17) 37.8±0.8 21.0±0.1 9.2±0.5 19.2±0.2 15.7±0.1 11.1±0.3 29.8±0.3
LwF* [49] (CVPR’17) 47.0±0.2 38.5±0.2 18.9±1.2 20.9±0.2 15.1±0.6 10.3±0.7 32.3±0.4
PASS [107] (CVPR’21) 37.8±1.1 24.5±1.0 19.3±1.7 25.9±0.5 23.1±0.5 9.8±0.3 -
IL2A [106] (NeurIPS’21) 43.5±0.3 28.3±1.7 16.4±0.9 20.7±0.5 18.2±0.4 16.2±0.4 -
SSRE [125] (CVPR’22) 44.2±0.6 32.1±0.9 21.5±1.8 33.2±0.7 24.0±1.0 22.1±0.7 45.0±0.5
FeTrIL [139] (WACV’23) 46.3±0.3 38.7±0.3 27.0±1.2 33.5±0.6 33.9±0.5 27.5±0.7 58.7±0.2
SEED 61.7±0.4 56.2±0.3 42.6±1.4 45.0±0.2 44.9±0.2 39.2±0.3 67.8±0.3
Joint 71.4±0.3 63.7±0.5 69.3±0.4 69.1±0.1 81.5±0.5

We present results for this setting in Tab. 8. For CIFAR-100, SEED is better than the best
method (FeTrIL) by 4.6, 4.1, and 1.4 percentage points for T = 6, 11, 21, respectively. For T = 6
on ImageNet-Subset, SEED is better by 3.3 percentage points than the best method. However,
with more tasks, T = 11 or T = 21, FeTrIL with a frozen feature extractor presents better average
incremental accuracy.

We can notice that simple regularization-based methods such as EWC and LwF* are far behind
more recent ones: FeTrIL, SSRE, and PASS, which achieve high levels of overall average incremen-
tal accuracy. However, these methods benefit from a larger initial task, where a robust feature
extractor can be trained before incremental steps. In SEED, each expert can still specialize for a
different set of tasks and continually learn more diversified features even with using regularization
like LwF. The difference between SEED and other methods is noticeably smaller in this scenario
than in the equal split scenario. This fact proves that SEED works better in scenarios where a
strong feature extractor must be trained from scratch or where there is a domain shift between
tasks.

Figure 18 depicts the quality of each expert on various tasks and their respective contributions
to the ensemble. It can be observed that experts specialize in tasks on which they were fine-tuned.
For each task, there is always an expert who exhibits over 2.5% points better accuracy than the
average of all experts. This demonstrates that experts specialize in different tasks. Additionally,
the ensemble consistently achieves higher accuracy (ranging from 6% to 10% points) than the
average of all experts on all tasks. Furthermore, the ensemble consistently outperforms the best
individual expert, indicating that each expert contributes uniquely to the ensemble.
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Table 8. Comparison of CIL methods on ResNet18 and CIFAR-100 or ImageNet-Subset under larger first task
conditions. We report task-agnostic avg. inc. accuracy from multiple runs. The best result is in bold. The
discrepancy in results between SEED and other methods decreases compared to the equal split scenario.

CIL Method
CIFAR-100 ImageNet-Subset

T=6 T=11 T=21 T=6 T=11 T=21
|C1|=50 |C1|=50 |C1|=40 |C1|=50 |C1|=50 |C1|=40

EWC∗ [42] (PNAS’17) 24.5 21.2 15.9 26.2 20.4 19.3
LwF* [49] (CVPR’17) 45.9 27.4 20.1 46.0 31.2 42.9
DeeSIL [50] (ECCVW’18) 60.0 50.6 38.1 67.9 60.1 50.5
MUC∗ [80] (ECCV’20) 49.4 30.2 21.3 - 35.1 -
SDC∗ [85] (CVPR’20) 56.8 57.0 58.9 - 61.2 -
ABD∗ [104] (ICCV’21) 63.8 62.5 57.4 - - -
PASS∗ [107] (CVPR’21) 63.5 61.8 58.1 64.4 61.8 51.3
IL2A∗ [106] (NeurIPS’21) 66.0 60.3 57.9 - - -
SSRE∗ [125] (CVPR’22) 65.9 65.0 61.7 - 67.7 -
FeTrIL∗ [139] (WACV’23) 66.3 65.2 61.5 72.2 71.2 67.1
SEED 70.9±0.3 69.3±0.5 62.9±0.9 75.5±0.4 70.9±0.5 63.0±0.8
Joint 80.4 81.5

ADF Method. A critical aspect in EFCIL is the semantic drift of feature representations [86] af-
ter training on new tasks. This results in the movement of class distributions in feature space. Thus,
it is crucial to track the old class representations after learning new tasks. While the class-mean in
the new feature space can be effectively estimated using Nearest-Mean of Exemplars (NME) [48],
[74], it is challenging to estimate it without exemplars. Usually, this drift is minimized with heavy
functional regularization, which consequently restricts the plasticity of the network. Another way
is to estimate it from the drift of current data, as done in SDC [86] or by augmenting old prototypes
using new class features [138], [142]. In this paper, we propose a novel drift estimation method
using adversarial examples to resurrect old class prototypes in the new feature space as shown
in Fig. 19.

We present a novel and intuitive method - Adversarial Drift Compensation (ADC) to estimate
semantic drift and resurrect old class prototypes in the new feature space. Exploiting the concept of
targeted adversarial attacks [33], [56], we propose to perturb the new data such that the adversarial
images result in embeddings close to the old prototypes. Now, the drift from old to new feature
space is estimated using these adversarial samples, which serve as pseudo-exemplars for the old
classes. We hypothesize that the pseudo-exemplars behave like the original exemplars in the feature
space, and thus we exploit them to measure the drift. This generation of adversarial samples
is computationally cheaper and much faster (only a few iterations) compared to data-inversion
methods [84] which inverts embeddings to realistic images.

To estimate the drift of old class prototypes after updating the model on new classes, it is
desirable to have the exemplars. These exemplars can be passed through the new model to compute
the oracle prototype position in the new feature space. However, in the exemplar-free setting, we
can only access the new data. In order to use the new data to represent the old data, we exploit the
concept of targeted adversarial attacks [33], [56] to target one old class at a time and perturb the
new data in a way that it serves as a substitute of old data to the model. We perform adversarial
attacks on new data to move its embeddings very close to old prototypes in the old feature space.

To estimate the drift of prototype P k
t−1 for a target old class k, we obtain X k by sampling a
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Figure 18. Diversity of experts on CIFAR-100 dataset with T = 20 split. The presented metric is relative
accuracy (%) calculated by subtracting the accuracy of each expert from the averaged accuracy of all experts.
Black squares represent experts selected to be finetuned on a given task. Although we do not impose any cost
function associated with experts’ diversity, they tend to specialize in different tasks by the design of our method.
Moreover, our ensemble (bottom row) always performs better than the best expert, proving that each expert
contributes uniquely to the ensemble in SEED.

set of m data points from the current task data Xt which are closest to P k
t−1 based on L2 distance

between the embeddings of samples in Xt and the prototype P k
t−1. We aim to perturb the samples

x ∈ X k and obtain X k
adv such that the adversarial samples xadv ∈ X k

adv are closer to P k
t−1 and are

now classified to class k using the NCM classifier in the old feature space:

k = argmin
y ∈Y1:t−1

∥ft−1(xadv)− P y
t−1∥2. (25)

We propose the following optimization objective by computing the mean squared error between
the features ft−1(x) and the prototype P k

t−1 as:

L(ft−1,X k, P k
t−1) =

1

|X k|
∑

x∈Xk

∥ft−1(x)− P k
t−1∥22. (26)

In order to move the feature embedding in the direction of the target prototype P k
t−1, we obtain

the gradient of the loss with respect to the data x ∈ X k, normalize it to get the unit attack vector
and scale it by α as follows:

xadv ←− x− α
∇xL(ft−1, x, P

k
t−1)

∥∇xL(ft−1, x, P k
t−1)∥2

∀x ∈ X k, (27)

where ∇xL(ft−1, x, P
k
t−1) is the gradient of the objective function with respect to the data x and

α refers to the step size. We perform the attack for i iterations.
Here, the goal is different from conventional adversarial attacks like FGSM and its variants [25],

[33], [53], [56] which aim to minimize the perturbation in order to keep the perturbed image
visually similar to the real image by having a fixed ϵ-budget generally based on ℓ2 or ℓ∞-norm of
perturbation. In our case, we do not need to apply such restrictions on the distance between initial
and final image, instead, we only clip the perturbed image in the existing range of pixel values. We
show in supplementary materials that indeed the generated adversarial images have much higher
perturbation. We do observe that our formulation is closer to the ℓ2-norm based attack as we use
ℓ2 normalization of the gradient vector to obtain a unit perturbation vector which is scaled using
the step size.
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Figure 19. Illustration of Adversarial Drift Compensation (ADC) and SDC [86]. In SDC, the drift ∆k
t−1−→t is

estimated as the average of drift of all new task samples after training on a new task. Instead, we propose to move
the new task features close to the old prototype Pk

t−1 of class k by perturbing the new images using targeted
adversarial attacks. The drift of the adversarial samples from old to new feature space is used to resurrect all old
prototypes.

Drift Compensation. The adversarial samples when passed through the new feature extractor ft
are expected to lie close to the drifted prototype and hence are used to compute the drift. After
generating the adversarial samples for each target class k, we measure the prototype drift as:

∆k
t−1−→t =

1

|X k
adv|

∑
xadv∈Xk

adv

(ft(xadv)− ft−1(xadv)), (28)

where xadv ∈ X k
adv is the set of only those adversarial samples which are classified as the target

class k using the NCM classifier. We resurrect the old prototypes by compensating the drift as
follows:

P k
t = P k

t−1 +∆k
t−1−→t. (29)

After compensating all old prototypes, we use the NCM classifier in the new feature space for
classifying the test samples. Unlike SDC [86], we do not perform weighted averaging based on
the distances to the prototype since embeddings from adversarial images are very close to the
prototypes and we found no gain by applying this additional weighting scheme.

We observe that methods proposed for the big-start settings of EFCIL are not effective in small-
start settings and perform poorly. A simple baseline trained with LwF and using NCM classifier
is performing better than most of the existing approaches - SSRE, PASS, FeTrIL and FeCAM
in several settings. While SDC improves over NCM, the proposed method ADC outperforms all
existing methods in both last task accuracy and average incremental accuracy across all settings
in Table 9 and Table 10. ADC outperforms the second-best method SDC by 4.2% on 5-task
and by 5.12% on 10-task settings of CIFAR-100 on last-task accuracy. For TinyImageNet, ADC
improves over the second-best method by 0.95% on 5-task and by 5.17% on 10-task settings. On
ImageNet-Subset, ADC is better by 2.58% on 5-task and by 1.72% on 10-task settings after the
last task.
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Method
CIFAR-100 TinyImageNet ImageNet-Subset

T = 5 T=10 T = 5 T =10 T = 5 T = 10
Alast Ainc Alast Ainc Alast Ainc Alast Ainc Alast Ainc Alast Ainc

LwF [43] 45.35 61.94 26.14 46.14 38.81 49.70 27.42 38.77 50.88 69.11 37.90 61.60
NCM 53.53 66.35 41.31 57.85 38.69 50.45 26.56 41.04 57.74 71.99 45.86 65.04
SDC [86] 54.94 64.82 41.36 58.02 40.05 50.82 27.15 40.46 59.82 74.10 43.72 65.83
PASS [108] 49.75 63.39 37.78 52.18 36.44 48.64 26.58 38.65 50.96 66.15 38.90 54.74
SSRE [125] 42.39 56.57 29.44 44.38 30.13 43.20 22.48 34.93 40.30 57.57 28.12 45.87
FeTrIL [139] 45.11 60.42 36.69 52.11 29.91 43.99 23.88 36.35 49.18 63.83 40.26 55.12
FeCAM [132] 47.28 61.37 33.82 48.58 25.62 39.85 23.21 35.32 54.18 67.21 42.68 57.45

ADC (Ours) 59.14 69.62 46.48 61.35 41.0 50.94 32.32 43.04 62.40 74.84 47.58 67.07

Table 9. Evaluation of EFCIL methods on small-start settings. Best results in bold and second best results are
underlined.

Method
CUB-200 Stanford Cars

T = 5 T=10 T = 7 T =14
Alast Ainc Alast Ainc Alast Ainc Alast Ainc

LwF [43] 58.68 71.31 41.96 60.15 45.18 61.14 30.33 49.93
NCM 52.74 67.13 38.47 57.83 42.22 59.06 31.60 51.34
SDC [86] 55.20 68.64 41.63 60.43 45.03 61.75 32.15 53.18
PASS [108] 34.04 49.00 26.37 41.08 20.71 37.13 12.30 25.46
FeTrIL [139] 54.66 67.45 49.09 62.42 36.92 54.09 34.29 50.41
FeCAM [132] 53.47 66.39 51.78 64.97 40.64 56.24 37.50 52.78

ADC (Ours) 64.46 73.49 57.97 68.91 54.86 67.07 45.07 61.39

Table 10. Evaluation of EFCIL methods on fine-grained datasets. Best results in bold and second best results are
underlined.

We also evaluate the EFCIL methods on the challenging fine-grained datasets of CUB-200 and
Stanford Cars. We observe in Table 10 that LwF is a strong baseline here, particularly in the 5-task
and 7-task settings and methods like NCM and SDC are not much better than LwF. While PASS
performs poorly on both datasets, FeTrIL and FeCAM performs better with FeCAM outperforming
the other methods on the 10-task setting of CUB-200 and 14-task setting of Stanford Cars. ADC
outperforms the runner-up methods by 5.78% on 5-task setting and by 6.19% on 10-task settings
of CUB-200. On Stanford Cars dataset, ADC is better by 9.68% on 7-task setting and 7.57 % on
14-task setting.
Drift estimation quality: We validate through Table 9 and Table 10 that the designed ADC method
is giving better accuracy results than the previous SDC method for all datasets. As an additional
verification, we check that this method was indeed better than SDC at estimating the old prototypes
drift. To do so, we use both SDC and ADC on the same trained checkpoints on CIFAR-100 5-task
settings and compare the estimated drift to the true drift computed using old data. We report the
results in Fig. 20, where we show the distribution of the estimated drift qualities. One drift per
class is estimated and we compute the cosine similarity of the estimated drift to the true drift. We
see that for all training tasks, the drifts estimated with ADC are of better quality than the ones
estimated with SDC. We observe that some class drift estimations with SDC have negative cosine
similarity with the true drift. However, we also see that the estimation quality decreases slightly
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Figure 20. Comparison between the two drift estimation methods SDC [86], and the proposed ADC, on
CIFAR-100 (5 tasks). We compute the drift for each class with the two methods and report the distribution of
drift estimation quality, measured by computing the cosine similarity between the estimated drift vector and the
true drift (obtained using old data), for all previous class prototypes.

for later training tasks. Indeed, as the backbone drifts more and more, it gets harder to estimate
the actual drift. The fact that we see this decrease more prominently for ADC might be because
the similarities obtained by SDC are already centered around a low-value (0.15) after the second
task, whereas the better ADC drift estimation is centered first around 0.9, to then decrease and
reach a minimum average of 0.7. This validates that ADC is able to track the movement of the
prototypes in the feature space.
Using ADC requires some additional computation to be made in-between each training session. In
this section, we provide an estimation of the additional computation required by our method and
compare it to the training time of a single task. At the end of each task, our method requires
estimating the drift of each stored prototype (1 per old class) and for each of these, compute several
adversarial samples starting from available current task samples. As a consequence, the training
time of our method scales linearly with the number of classes. For each class, we compute 100
adversarial samples in a single batch and perform 3 training iterations. In order to perform one
iteration, we need to compute the gradient of the adversarial loss with respect to the input image,
whose cost is equivalent to the one of a normal training backward pass [67]. So, if we denote the
number of classes by Nc, and the number of iterations by Ni, we need to perform Nc×Ni backward
passes. In the case of CIFAR-100 and ImageNet-Subset divided into 10 tasks each containing 10
classes, this means an overhead of,

∑9
t=1 10× t× 3 = 1350 backward passes. In contrast, one new

task is trained for 100 epochs with a batch size of 128 (39 batches per epochs with 10 tasks on
CIFAR-100), which amounts to 3900 backward passes per task, and two times more for the first
task (trained for 200 epochs). In total, our method increases the computational cost by 3.1% in
this setting. For the 5-task setting of CIFAR-100 and ImageNet-Subset, it increases by 2.5%.

6.4.2 Relevant publications

1. Divide and not forget: Ensemble of selectively trained experts in Continual Learning, Rypeść
G., Cygert S., Khan V., Trzciński T., Zieliński B., Twardowski B., The Twelfth International
Conference on Learning Representations (ICLR) 2024.

70

https://openreview.net/forum?id=sSyytcewxe


2. Resurrecting Old Classes with New Data for Exemplar-Free Continual Learning, Goswami D.,
Soutif-Cormerais A., Liu Y., Kamath S., Twardowski B., van de Weijer J., The IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) 2024.

6.4.3 Relevant Software Releases / Datasets

• Code of SEED method, implemented in FACIL framework [117].

– Available on GitHub: https://github.com/grypesc/SEED.

• Code of Adversarial Drift Compensation method implemented using PyCIL framework [146].

– Available on GitHub: https://github.com/dipamgoswami/ADC.

6.4.4 Relevant Use Cases

The two proposed methods SEED and ADF can be easily applied in all image classification sce-
narios, where the number of classes grows through time (class-incremental), as well as in scenarios
where the new samples are gathered through time (domain-incremental). Both methods will result
in no need for training from scratch whenever new data emerge, and continue to accumulate the
new knowledge with the same model.

6.5 Sustainable Computer Vision for Autonomous Machines
Contributing partners: IDEAS, NCBR

In recent years, the proliferation of data across various devices and the growing concerns over
data privacy have spurred significant interest in Federated Learning (FL). Federated Learning
enables multiple parties to collaboratively train machine learning models without the need to
centralize their data, thereby preserving privacy and reducing the risk of data breaches. However,
traditional Federated Learning methods often assume fully labeled datasets, which is not always
practical due to the high cost and expertise required for accurate labeling. This has led to the
exploration of Self-Supervised Learning (SSL) within the Federated Learning framework, where
models learn useful representations from unlabeled data.

In this stage of our research, we focus on Split Federated Learning (SFL), a variant of Federated
Learning that further enhances privacy and reduces computational overhead on client devices. SFL
divides the model into two parts: one part is trained on the client devices, and the other part is
trained on a central server. This division allows for more efficient use of computational resources
and better protection of client data. [46], [134]. In conventional federated learning, communication
mainly involves exchanging model parameters, whereas SFL also requires transferring activations
and gradients for forward and backward propagation.

Traditional FL methods have shown considerable success in supervised learning tasks, but the
assumption of fully labeled datasets is often impractical [46], [94]. Early attempts to integrate
SSL with FL, such as FedU and FedEMA, have struggled with data diversity and privacy concerns,
limiting their scalability. However, a notable example is the Momentum Contrastive Split Federated
Learning (MocoSFL) method, which combines MoCo with SFL, has demonstrated the potential to
scale SSL to highly distributed environments with up to 1000 clients [77], [134].

Despite the advancements, MocoSFL and similar methods face limitations, particularly in terms
of communication overhead and privacy concerns. The communication of intermediate represen-
tations from low layers can increase the risk of data leakage and attacks such as Model Inversion
Attack (MIA) [24]. Additionally, the size of these representations can lead to increased communi-
cation overhead, making the process less efficient [134] as shown in Figure 21.
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Figure 21. The relationship between communication overhead and accuracy for MocoSFL and MonAcoSFL across
different splitting depths. In this scenario, the optimal communication overhead is achieved by splitting the model
into 11 layers on the client side and 7 layers on the server side. Notably, MocoSFL experiences a significant drop
in accuracy at this optimal split, whereas MonAcoSFL maintains high accuracy. The computational overhead is
composed of forward and backward propagation (indicated in blue) and parameter synchronization (indicated in
orange).

In our research paper, we delve into the relationship between communication overhead and
the splitting point. We identify the optimal splitting point and highlight the poor performance of
MocoSFL when aligned with it. As a remedy, we introduce Momentum-Aligned Contrastive Split
Federated Learning (MonAcoSFL). In contrast to MocoSFL, which synchronizes only the online
client models during the training, MonAcoSFL also synchronizes their momentum models. This
change is crucial because it prevents the divergence of online and momentum models and reduces
confusion during training [134].

6.5.1 Technical description of the work

SFL [46] is a practical variant of federated learning that divides the model into two parts: one part
resides on the client devices and the other on the server. Formally, let N denote the number of
participating clients and fϕi

represent a copy of the model fϕ stored on the i-th client, parameter-
ized by ϕi. The model fϕ is decomposed into two components, fsϕs ◦ f cϕc , where ϕ = ϕs ∪ ϕc. Here,
f cϕc is distributed across the client devices, and fsϕs is maintained on the centralized server. While
there are multiple copies of f cϕc , there is only a single version of the parameters ϕs on the server.

Initially, all client models start with identical parameters (ϕc1 = ϕc2 = · · · = ϕcN ) and undergo
training in two distinct phases:

1. Optimization of ϕc1, ..., ϕcN , ϕs with respect to the training objective L.

2. Synchronization of ϕc1, ..., ϕcN by updating each ϕci to the average parameter value ϕ̂c =∑N
i=0

ϕci
N

.
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During the optimization phase, each client processes only its local data, which causes the param-
eters ϕc1, ..., ϕcN to diverge over time. Therefore, the synchronization phase is essential to realign
the client models.

SSL is a framework for learning data representations without the need for labeled data [110],
[129]. The most common approaches in SSL today are joint-embedding architectures [72], [73], [75],
[77], [92], [128], where the model f is trained by optimizing contrastive objectives. Specifically, let
x′ and x′′ be two augmented versions of a sample x ∼ X. The contrastive objectives aim to make
the embeddings f(x′) and f(x′′) similar while preventing trivial solutions, such as producing iden-
tical embeddings for different data samples. To achieve this, most joint-embedding methods [72],
[92] employ objective functions that require large batch sizes. The significant data requirements
and computational overhead of contrastive objectives pose practical challenges for deploying SSL
methods in highly distributed federated environments [109], [126], [134]. Momentum Contrastive
Split Federated Learning (MocoSFL) [134] tackles the practical difficulties of implementing SSL
methods in distributed settings by integrating SFL [121] with the Momentum Contrastive Learning
(MoCo) [77] approach.

In MocoSFL, the contrastive learning objective is derived using the InfoNCE loss function [57],
which leverages a memory bank of embeddings, denoted as M :

LInfoNCE(z′, z′′,M) = − log exp(z′ · z′′/τ)
exp(z′ · z′′/τ) +

∑
zM∈M exp(z′ · zM/τ).

(30)

Here, z′ = fϕ(x′) and z′′ = fEMA(ϕ)(x′′) are the embeddings of two augmented versions of the same
data sample x, and zM represents the embeddings stored in the memory bank M . The memory
bank is updated with z′′ after each training step in a first-in-first-out manner. The parameters ϕ
correspond to the online model, while EMA(ϕ), the exponential moving average of ϕ, corresponds
to the momentum model. In the SFL setup, each client maintains its own set of parameters ϕci and
EMA(ϕci ), whereas the server holds a single set of parameters ϕs and EMA(ϕs). The memory
bank M is also managed by the server.

MocoSFL stands out as the only SSL method capable of functioning effectively in a cross-client
federated learning environment with over 100 clients, each contributing as few as 250 data samples
from various distributions [134]. This capability is facilitated by a large memory bank of negative
examples from all clients, which helps to mitigate the negative impact of small batch sizes on
individual clients [72], [90] and reduces the likelihood of overfitting to any single client’s data
distribution [87]. Furthermore, by offloading the majority of the model layers and the contrastive
objective to the server, the computational burden on the clients is significantly reduced [121].

MocoSFL limitations. Despite the success of MocoSFL, it has several limitations. We begin
by outlining the limitations of MocoSFL, particularly focusing on the significant privacy concerns
associated with sending representations from low layers. Privacy concerns caused by sending
representations from low layers are illustrated in Figure 22. One can observe that representations
of low ResNet18 [32] layers highly resemble the respective input data, in contrast to the activations
from the higher layers. In fact, in principle, models that learn perceptive features (such as MoCo)
do not retain reconstructive features in their high representations [72]. Thus, in SFL, increasing the
number of layers on the client side reduces the privacy risks associated with broadcasting network
representations.

Another limitation is the communication overhead. Mobile network architectures like ResNet [32]
and MobileNet [58] reduce the spatial dimensions of representations while increasing their channel
dimensions as layers progress. This results in smaller overall representation sizes at deeper layers,
reducing bandwidth needs during the SFL optimization phase. However, having more layers on
client devices means more parameters need to be exchanged during synchronization, increasing
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Figure 22. Activations obtained from successive layers of ResNet-18 for a sample ImageNet image. One can
observe that representations of low layers highly resemble the respective input data, increasing the privacy risks
associated with broadcasting network activations.

bandwidth requirements. Thus, there is a trade-off between these two types of communication
overheads, with an optimal split point in the higher layers, as shown in Figure 24.

While deeper splits offer privacy and efficiency benefits, they also raise the question of how
they impact MocoSFL’s performance. To investigate this, we evaluated MocoSFL on the CIFAR-
10 dataset [16] with 5, 20, and 200 clients, following the setup in [134]. As shown in Figure 25, we
found that deeper splits lead to a significant drop in model accuracy.

MonAcoSFL. Initially, client models start with identical parameters ϕc1 = ϕc2 = · · · = ϕcN . Dur-
ing training, these parameters diverge due to different local datasets, requiring periodic synchro-
nization. MocoSFL synchronizes only the online client models, disrupting the MoCo assumption
that online and momentum models encode similar representations, which is crucial for minimizing
the contrastive objective [77]. This misalignment worsens with increased splitting depth, leading
to performance degradation.

Algorithm. We introduce Momentum-Aligned Contrastive SFL as shown in Figure 23, which
aligns online and momentum client models by synchronizing the momentum models whenever the
online models are synchronized. Specifically, the momentum model of each client is updated as
follows:

̂EMA(ϕc) =

∑N
i=0EMA(ϕci )

N
.

Since EMA(ϕc1), . . . , EMA(ϕcN ) are the EMAs of the individual ϕc1, . . . , ϕcN , their average cor-
responds to the EMA of the average online parameters (ϕ̂c), i.e., ̂EMA(ϕc) = EMA(ϕ̂c).

Hardware. We emulate the distributed setup on a single machine, utilizing an NVidia A100
GPU to host and execute both client and server models.

Architecture. Our experiments employ the mobile-optimized ResNet18 [32] and MobileNetV2 [58]
architectures.

Data. We perform our experiments using the CIFAR-10 and CIFAR-100 datasets [16]. To
simulate a realistic scenario, we distribute the data equally among clients, ensuring each client
has access to only a small subset. We adopt a challenging non-IID setting, where data is not
independently and identically distributed across clients. Specifically, each client receives images
from a random selection of 2 classes for CIFAR-10 or 20 classes for CIFAR-100.

74



Ti
m

e

Training

Parameter space

Synchronization

Training

AlignedAligned

Misaligned Misaligned

Ti
m

e

Training

Parameter space

Momentum-aligned
synchronization 

Training

AlignedAligned

Aligned

Legend Client 1 Client 2

Online models
Momentum models

SynchronizedInitial

MocoSFL MonAcoSFL (our)

Figure 23. Visualization of parameters changing in MocoSFL (left) and MonAcoSFL (right) for two clients. The
solid and dashed lines represent the progression of online and momentum parameters, respectively. The dotted
lines symbolize the synchronization of parameters. The difference between MocoSFL and MonAcoSFL lies in the
synchronization procedure that, in the case of MonAcoSFL, ensures that both online and the momentum models
remain aligned, preserving their ability to optimize the contrastive objective.

Number of clients. We compare MocoSFL and MonAcoSFL in cross-silo (5 or 20 clients) and
cross-client (200 clients) settings. Models are synchronized 10 times per epoch, equating to every
1000, 250, and 25 images for 5, 20, and 200 clients, respectively. We adjust batch sizes to keep the
server-side batch size around 100. For example, in the 5-client setting, the batch size is 20, while
in the 200-client setting, 100 clients are randomly selected per epoch with a batch size of 1.

SSL model. We employ MoCo-v2 [73], enhanced with a 2-layer MLP projector network with
a hidden size of 1024 [72], [130], which is removed post-SSL pretraining. The server manages a
FIFO queue memory of 6000 negative embeddings, updated with momentum model embeddings
from the latest mini-batch after each training step. MocoSFL is trained for 200 epochs using the
SGD optimizer, starting with a learning rate of 0.06, momentum of 0.9, and weight decay of 0.0005.
The learning rate follows a cosine decay schedule throughout the training process.

Evaluation. After each epoch, we validate the model using k-NN on 20% of the validation set.
This method is commonly used to assess self-supervised representations during training [98], [134].
We select the model with the highest k-NN performance for final evaluation. The final performance
is determined using the linear evaluation protocol [72], [75], [98], [126], [134]. Specifically, we freeze
the pretrained backbone, add a random linear layer, and train this layer on the labeled dataset for
100 epochs with a batch size of 128, using the Adam optimizer [41] with an initial learning rate of
0.001 and a cosine learning rate schedule.

Figure 26 illustrates the performance of MonAcoSFL and MocoSFL across different client con-
figurations using the ResNet architecture. While both methods show a decline in accuracy with
deeper splits, MonAcoSFL’s accuracy drop is significantly less pronounced compared to MocoSFL.
At the optimal communication-efficient split (layers 11-13), MonAcoSFL outperforms MocoSFL by
over 30 percentage points. This advantage is even more evident with the MobileNet architecture,
as shown in Figure 27. Specifically, with 20 clients, MonAcoSFL achieves over 40 percentage points
higher accuracy than MocoSFL from the 3rd to the 15th cut layer on the CIFAR-10 dataset.

We evaluate the privacy-preserving features of MonAcoSFL and MoCoSFL using a Model In-
version Attack (MIA)[24]. Assuming the attacker has access to 1% of the training data, we train
a decoder to reconstruct images from client model embeddings. The decoder is trained using the
MSE loss and Adam optimizer with a learning rate of 0.001 over 50 epochs and a batch size of
32. The attack targets ResNet-18 models pretrained on the CIFAR-100 dataset with 20 clients
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Figure 24. Communication overhead of a single client device for one training epoch of ResNet-18 [32] and
MobileNet-V2 [58] for different splitting depths. The 11-th and 7-th layers are the most communication-efficient
for ResNet-18 and MobileNetV2, respectively. Note that the training epoch corresponds to 250 images of
resolution 224× 224 are processed, and 10 synchronizations of parameters. Moreover, the blue bars correspond to
communication in the optimization phase, and the orange bars correspond to parameter synchronization.
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Figure 25. Accuracy of MocoSFL drops significantly with increased splitting depth regardless of the number of
clients. Here, presented for CIFAR-10 [16].

and various cut-layers. No pre-training or additional privacy techniques like TAResSFL [134] are
employed.

Figure 28 shows the comparison of original and reconstructed images in terms of MSE, where
higher MSE values indicate better privacy. For cut-layers 1-13, both MocoSFL and MonAcoSFL
exhibit similar reconstruction errors, with MonAcoSFL showing slightly higher errors. The MSE
remains stable for layers 1-7 and increases for layers 9-17, suggesting better privacy for these deeper
layers. In conclusion, deeper cut-layers (9-13) not only enhance computational efficiency but also
improve client data protection.

To empirically confirm that maintains the alignment between online and momentum model
parameters, we track this alignment during training. We quantify the average misalignment as the
mean absolute difference between the online and momentum parameters, defined as:

N∑
i=0

|ϕci − EMA(ϕci )|
N · dim(ϕc)

, (31)

where N represents the number of clients and dim(ϕc) denotes the dimensionality of the client
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Figure 26. Linear evaluation of MocoSFL and MonAcoSFL on ResNet18 architecture. MonAcoSFL maintains the
accuracy with increasing cut-layers, whereas the performance of MocoSFL rapidly deteriorates.
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Figure 27. Linear evaluation accuracy on MobileNetV2 backbone trained with MocoSFL and MonAcoSFL. There
is significant discrepancy between MonAcoSFL and MoCoSFL at every splitting depth.

model parameters.
We illustrate the misalignment values for the initial 1500 training steps (out of approximately

50000) of ResNet18 trained on CIFAR-100 by 20 clients, using MocoSFL and MonAcoSFL with
a split at the 11th layer, in Figure 29. During the first 125 steps, both methods show similar
misalignments. However, when parameters are synchronized, the misalignment between the online
and momentum models in MocoSFL increases significantly. In contrast, MonAcoSFL maintains a
consistent alignment between the momentum and online models throughout the training.

6.5.2 Relevant Publications

1. A deep cut into Split Federated Self-Supervised Learning; (Przewięźlikowski, M.; Osial, M.;
Zieliński, B.; and Śmieja, M.; European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases (ECML PKDD),2024).
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Figure 29. Average misalignment between online and momentum client models during the early training stages for
MonAcoSFL and MocoSFL (lower values are preferable). Blue lines mark the parameter synchronization intervals
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stays relatively stable, leading to more consistent training.

6.5.3 Relevant Resources

• Code of MonAcoSFL method

– Available on GitHub: https://github.com/gmum/MonAcoSFL

6.5.4 Relevant Use Cases

MonAcoSFL is particularly advantageous in scenarios that demand data privacy and efficient dis-
tributed communication. This framework is ideal for applications involving sensitive, unlabeled
data that must remain decentralized, such as in the healthcare and finance sectors. The split
model architecture of MonAcoSFL further enhances its utility by enabling deployment on resource-
constrained devices, making it suitable for autonomous systems. For instance, drones used in
wildlife protection, fire detection, and safety services can leverage MonAcoSFL to collaboratively
learn from shared experiences without compromising the data privacy of of individuals, critical
infrastructure, or private properties.
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6.6 Selecting Images with Entropy for Frugal Knowledge Distillation
Contribution partner: CERTH

Knowledge Distillation (KD) is a mechanism aimed at reducing the size and complexity of
these models without significantly sacrificing performance [95], i.e. aiming at frugal learning. In
our work, we are interested in the frugality of KD in two ways. Our first objective is to produce
an accurate and compressed student model. Additionally, our second objective is to ensure that
the KD process itself is lightweight, meaning it should require minimal time, resources, and energy
to complete. This is particularly important when the student model needs to be distilled in an
edge computing environment rather than in a data center, which typically follows a centralized
approach [65].

6.6.1 Technical Description

The main proposed idea involves utilizing entropy on image representations to identify image
samples that make a greater contribution to the KD process, resulting in a student model with
high predictive performance. The utilization of entropy in the image representations is the most
important step in frugal KD workflow as depicted in Figure 30 and Figure 31.

Figure 30. Subset of Dataset: Selecting Images with Entropy

Figure 31. Knowledge Distillation with Image Selection

Image Representations. In the Image Representation step, we aim to generate a vector
representation that encapsulates the unique insights and characteristics of each image. As we can
see in Figure 30, step c, in these image vector representations we apply the cross entropy formula
to provide a quantitative measure of the information content and complexity within the images.
We have explored various image representations, each offering distinct characteristics for encoding
visual content complexity. These include: 1) histograms, 2) adjusted histograms, 3) logits vectors,
and 4) compressed feature vectors.

Entropy Formula. We use the entropy formula on the image representations as we can
see in Figure 30 step d. Entropy in the context of image analysis, measures the uncertainty or
disorder within the distribution of pixel intensities, latent representations, or other image features.
A higher entropy value indicates greater complexity or information content within the image, while
lower entropy suggests more predictability or uniformity. By computing entropy for each image
representation in an image dataset, we can gauge its relative importance based on the diversity
and wealth of information it contains.

The entropy function H(X) is defined as:
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H(X) = −
n∑

i=1

P (i) logP (i),

where P (i) denotes the probability of occurrence of each image feature i. The natural logarithm log
amplifies the importance of rare features, while the summation process aggregates contributions
from all possible features in the image.

Image Importance. Image importance is a measure of the significance or relevance of individual
images in a dataset. As we can see in Figure 30 step e, we use an image importance criterion
to prioritize images to be included in the subset. In our approach we quantify image importance
through the calculation of entropy. Specifically, we use the entropy formula to assess the importance
of images within a dataset, which comprises images categorized into a number of classes. It is
important to ensure balanced representation across categories. Thus we select an equal number of
images per class.

Output: Subset Dataset. After quantifying the importance of images within the dataset, our
focus shifts to constructing a curated subset, as we can see in Figure 30 step f, optimized for efficient
knowledge transfer in model distillation. Leveraging entropy-based image importance metrics, we
employ a selection strategy aimed at capturing diverse visual patterns, while maintaining class
balance. By prioritizing images with higher entropy scores indicative of greater complexity and
information content, we curate an image subset that encapsulates the essential characteristics of
the original dataset. This curated subset facilitates efficient knowledge extraction and transfer
from the teacher to the student model. It is also the input to the KD process and the first step in
the pipeline that is depicted in Figure 31.

Image Representations. We assess four distinct methodologies for representing images, each
offering unique insights into their visual characteristics and content. These methodologies encom-
pass histogram analysis, averaged adjusted histograms, logits vector extraction, and compressed
feature vectors obtained through autoencoder-based encoding as depicted in Figure 32. By repre-
senting the images as vectors and applying the entropy formula to them, we assess the significance
of each image for inclusion in the image subset.

Experimental Evaluation. The proposed model has been implemented and experimentally
evaluated using Python 3 and the modules, OpenCV, argparse, NumPy, pandas, Scikit-learn,
and PyTorch. The environment used for the evaluation was an Ubuntu Linux computer with
an Intel i5-4670K CPU, 16 GBs of RAM at 2400 MHz and an ASUS RTX 2060 GPU. In our
experimental evaluation, we also made experiments with Random Image Subset Selection [78],
Highest Variance Criterion, and Manifold Learning-based Data Sampling [52]. Our experimental
outcomes confirm that images with higher entropy contain more information and make a more
substantial contribution to the KD process compared to those with lower entropy, random selection
and other criteria such as highest variance and manifold learning-based sampling. Furthermore,
experiments with different image representation methods shed light on their impact on model
performance and efficiency with the average adjusted histograms method exhibited 3% better
accuracy than any other method.
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Figure 32. Image Representations

6.6.2 Relevant Publications

• An article submission, titled “Selecting Images with Entropy for Frugal Knowledge Distilla-
tion” by N. K. Karapiperis, J. Violos, M. Kinnas, S. Papadopoulos, and I. Kompatsiaris, is
under preparation at the time of writing this deliverable.

6.6.3 Relevant Software Releases / Datasets

• The code will be made publicly available on GitHub once the paper is accepted at https:
//github.com/NikosKarapiperis/Entropy-Image-Selection-KD

6.6.4 Relevant Use Cases

The proposed methodology can potentially be applied to any use case within the ELIAS project
where there is a need to compress a large deep learning model with minimal computational resources
and KD time.

6.7 Reducing the Energy Requirements of Inference using two Hetero-
geneous CNNs

Contribution partner: CERTH
The goal of this research work is to propose a methodology based on the synergy of two small

CNNs to achieve the performance of a large CNN while maintaining the energy efficiency of a small,
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more compact model [27].

6.7.1 Technical Description

Our methodology encompasses two heterogeneous CNNs paired with a memory component as
seen in Figure 33. Upon receiving an input for classification, the memory component first verifies
whether a classification has been previously assigned to the particular input. If such a classification
exists, the stored result is immediately retrieved without engaging any of the CNNs. In the
event that no prior classification exists, the input undergoes processing by the initial CNN and a
prediction confidence score is computed. This score is then compared against a predefined threshold.
If the score surpasses this threshold, the classification is considered accurate. Conversely, the input
is forwarded to the second CNN for classification. Following this, a new prediction confidence
score is calculated for the second CNN. A final decision regarding the more accurate classification
is determined by comparing these scores and the outcome is saved in the memory component.

Figure 33. Two heterogeneous small CNN’s with a memory component.

Two Heterogeneous CNNs. Our methodology incorporates two compact CNN architectures,
allowing them to complement each other’s deficiencies. In instances of classification ambiguity, the
utilization of an alternative CNN mitigates such limitations, given that each CNN captures unique
facets of the dataset’s information. Opting for two small models, as opposed to a mixture of large
and small ones, further minimizes power consumption. In order to quantify the heterogeneity of a
selected pair of CNNs models A and B of similar size and complexity, we define the heterogeneity
factor as given in equation 32 where A and B are the number of true predictions of models A and
B and N the number of inputs.

heterogeneity(A,B) =
A ∪B − 2 ·A ∩B

N
(32)

Score Functions. The CNNs in a classification problem produce a logits vector z⃗, which, upon
passing each value of the vector through a softmax function (equation 33), is converted into a
probability distribution vector p⃗ where i and j are the i-th and j-th element of the logits vector.
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σ(z⃗)i =
ezi∑N
j=1 e

zj
(33)

Each dimension of this vector corresponds to a class, with the value indicating the probability
that the input belongs to that class. We then operate on this probability vector applying Max
Probability, Difference score, or Entropy score function as presented in [55]:

Score Comparison. The calculated score value of the selected scoring function is utilized in two
distinct manners. First, it is employed to compare the score value of the initial neural network CNN
against a predetermined threshold. This comparison determines whether to trigger the subsequent
neural network. Secondly, subsequent to the invocation of the second CNN, a second score is
computed. The two scores are juxtaposed against each other, and the prediction of the CNN with
the highest (or lowest, if the entropy score function is applied) score is employed.

Threshold hyper-parameter. The threshold hyperparameter is a fixed value that determines
the extent of usage of the second CNN. We select the value that maximizes the accuracy while
minimizing the use of the second CNN.

Memory Component. We incorporate a Memory component designed to reduce energy con-
sumption during predictions under specific conditions. This component aims to recall whether
a previous classification has been made for a given input, thereby bypassing the need to invoke
the CNN when possible. To implement this we explored two Perceptual Hashing methods, the
Difference Hash and the Invariants of Complex Moments [15].

Figure 34. Experiment results for CIFAR10 (left) and ImageNet (right)

Experimental Evaluation. We conducted our experiments on a Jetson Nano computer powered
through the USB at approximately 5.15V, and we used a USB power meter capable of measuring
milliamps (mAh) and watt-hours (Wh) to the second decimal digit. The datasets used in our
experiments are CIFAR-10 and ImageNet. Figure 34 illustrates results. From top to bottom: Single
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large CNN (SC-4 and SI-4), state-of-the-art big-little [27] (DC-1 and DI-1), our implementation of
two heterogeneous small CNNs (DC-2 and DI-2), our implementation using oracle score function
(DC-3 and DI-3).

Our proposed model with two heterogeneous DL models (DC-2) for the CIFAR-10 dataset used
76.9% less energy compared to the single large CNN (SC-4), with a 1.4% decrease in Top-1%
prediction accuracy. Additionally, when compared to the big/little configuration (DC-1), our im-
plementation consumed 62.6% less energy, with a 1.7% reduction in Top-1% prediction accuracy.
For the ImageNet dataset, our proposed model with two heterogeneous DL models (DI-2) consumed
65.3% less energy than the single large CNN (SI-4), with a 2.1% decrease in Top-1% prediction ac-
curacy. Furthermore, compared to the big/little configuration (DI-1), our implementation achieved
a 62% reduction in energy consumption, with a 2.2% reduction in Top-1% prediction accuracy.

6.7.2 Relevant Publications

• An article submission, titled ”Reducing the Energy Requirements of Inference using two
Heterogeneous CNNs” by M. Kinnas, J. Violos, S. Papadopoulos, and I. Kompatsiaris, is
under preparation at the time of writing this deliverable.

6.7.3 Relevant Software Releases / Datasets

• The code will be made publicly available on GitHub once the paper is accepted at https:
//github.com/michaelkinnas/Reducing-the-energy-requirements-of-inference-usi
ng-two-heterogeneous-CNNs

6.7.4 Relevant Use Cases

The proposed methodology involving two small heterogeneous CNNs can potentially be applied
to any use case within the ELIAS project where image classification needs to occur on resource-
constrained devices with minimal response times.

6.8 Energy-Efficient Gaussian Processes Using Low-Precision Arithmetic
Contributing partner: HPI

The widespread use of artificial intelligence requires finding energy-efficient paradigms for the
field. We propose to reduce the energy consumption of Gaussian process regression using low-
precision floating-point representations. Gaussian process regression is a probabilistic and data-
efficient model. We explored how low-precision (similar core idea as pruning or quantization)
representations impact the results of Gaussian process regression and how data set properties,
implementation approach, model performance, and energy consumption interact.

6.8.1 Technical Description

We suggest using low-precision Gaussian process regression (GPR) as a means of decreasing the
power consumption of this AI method. GPR is typically used for small data sets where the
prediction of uncertainty is of key importance. Enhancing the efficiency of these routine tasks has
the potential to generate significant overall power savings. We investigate the connection between
Gaussian process regression, arbitrary low-precision utilization, and power consumption.

Gaussian process regression is a mature model and a powerful tool for regression. The model
[9] has been widely adopted, as evidenced by its reception in the academic community and its
inclusion in many libraries for industry use.
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We propose low-precision Gaussian processes to reduce the power consumption of Gaussian
process regression. Our low-precision approach can be directly utilized by many processors and
GPUs that have inherent abilities to use smaller floating-point representations through SIMD or
other native hardware implementations without the need for special hardware. However, low-
precision floating-point representations can accumulate large round-off errors. Determining the
appropriate low-precision representation is a non-trivial task, as the algorithm implementation,
the chosen kernel, the specific data set, and the desired model performance interact with a specific
numerical representation. It is not known what precision to use for reasonable model performance.
Existing work from numerical linear algebra provides theory-guided upper error bounds of specific
arithmetic operations and even subtasks in Gaussian process regression. However, the complexity of
what precision delivers a reasonable model performance in an end-to-end perspective for Gaussian
process regression with real data is only feasible through an empirical evaluation.
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Figure 35. Results of the power consumption benchmark for addition and multiplication circuits relative to 53-bit
double-precision, showing a linear power pattern in line with their circuit-size complexities. The power
measurements were conducted on an FPGA-core.

To determine power consumption and potential savings in a generic and platform-independent
manner, we focused on comparing relative reductions rather than absolute values. During our
experiments, we counted the arithmetic operations that were performed while fitting the training
data and during the inference phase. We then established a relationship between these operations
and the power consumption of the corresponding arithmetic circuits on an FPGA, taking into
account the precision used. To determine the extent of power savings, we performed a benchmark
of the energy usage of simplified arithmetic circuits at different precision levels at the circuit level.
Simplified refers to the implementation of integer-based circuits as they exhibit the same scaling
properties as their complex IEEE floating-point counterparts. Given that the majority of operations
in Gaussian process regression involve addition and multiplication or can be traced back to it, we
focused on implementing these two operations on circuits and measuring their power consumption.

We implement a Carry-Ripple Adder circuit (by using a 2s complement, subtraction is equiv-
alent to using an addition circuit). The state machines used in (non-)restoring division and add-
and-shift multiplication have very similar designs and exhibit the same scaling properties. For
simplicity, we assume that the power consumption of all other operations is independent of a
numeric representation. Thus, we can assign any numerical operation in GPR to addition, multi-
plication, division, or being constant (not optimized). The energy reduction is the weighted mean of
the power measurements for a representation, depending on the fraction of additions/subtractions
and multiplications/divisions. Figure 35 displays the benchmarking results for power consumption
for addition and multiplication. Both circuits show a linear power consumption pattern, which
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is consistent with the expected behavior for circuits with linear size complexity. Anomalies in
power consumption are observed in the 24-bit addition circuit, but these may be due to an efficient
compiler mapping to our FPGA core, rather than a general rule. All other measurements for both
circuits conform closely to the regression line.

Figure 36. The impact of low-precision numeric representations on energy consumption and model performance
in Gaussian Process Regression with Cholesky decomposition and conjugate gradients implementation. The table
includes selected results: lowest precision with stable computations, lowest precision with competitive (bold)
performances (∆ UC, Train and Test RMSE) and double precision. Brackets in Precision column indicate the
number of stable experiments to total experiments.

Figure 36 displays the combined results. For Gaussian process regression using Cholesky de-
composition, we achieved a power reduction of up to 88.94% for 83.27% to 87.43% of all operations
compared to using double-precision floating-point representations. When using conjugate gradi-
ents, we achieved a decrease of up to 89.01% in energy consumption for 96.96% to 98.08% of all
operations. Using low-precision representations leads to less than ±0.02 deviation in root mean
squared error of the test set and less than ±0.04 deviation on the train set. The uncertainty
calibration changes by less than ±0.03.

6.8.2 Relevant Publications

• Alder, N., Herbrich, R. Energy-Efficient Gaussian Processes Using Low-Precision Arithmetic.
In Forty-first International Conference on Machine Learning (2024).
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6.8.3 Relevant Software Releases / Datasets

• The source code for “Energy-Efficient Gaussian Processes Using Low-Precision Arithmetic”
is publicly available at https://github.com/nicolas-alder/energy-efficient-gps.

6.8.4 Relevant Use Cases

The proposed methodology can be applied to any use case within the ELIAS project where Gaus-
sian process regression is applicable or algorithms perform matrix inversions. Furthermore, our
research suggests that low-precision arithmetic is a reasonable overall approach for reducing power
consumption as long as the quality of outputs meets the individual use case requirements.
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