

Tabular Foundation Models

Frank Hutter

frank@priorlabs.ai

PRIOR LABS

Tabular data?

Example: Which patients have early-stage Alzheimer (based on omics blood markers)?

ID	L-Car-	Crea-	Homocys-	Beta-hydro-	Early-stage	
	nitin	tinin	${f tein}$	xybutyrat	Alzheimer	
1	45.2	85	12.1	0.4	Yes	•
2	38.7	72	10.5	0.3	No	
3	41.0	90	13.2	0.2	Yes	
4	36.5	80	9.4	0.5	No	
5	44.8	78	12.0	0.6	Yes	
6	39.3	88	11.1	0.4	No	
7	42.1	76	13.0	0.7	Yes	
8	37.5	70	8.9	0.3	No	
9	40.9	92	14.1	0.5	Yes	
10	36.0	75	10.2	0.4	No	
:	:	:	:	:	:	
5000	43.0	84	12.7	0.6	Yes	
5001	41.2	81	11.5	0.4	?	•
5002	43.5	83	11.8	0.5	?	
5003	39.9	74	10.0	0.3	?	Tabular
		_	_	1		prediction problem

Personalized health models

- "Omics"-bloodmarkers instead of invasive diagnostics
- Better tabular models multiply value of \$BN data acquisition efforts

Why tabular data?

Business Healthcare Finance Insurance Analytics Personalized Customer Classification / Regression Drug response Loan default Fraud Customer Premium price Fraud Risk Lifetime Value prediction prediction detection segmentation prediction detection Prediction Prediction Medical billing AML & Claim & loss Sepsis Credit risk Pricing Resource Customer fraud transaction optimization detection allocation prediction segmentation assessment detection monitoring Hospital Currency Sales & Time Series Al-Enhanced Trading price Metric Climate risk Care cost readmission exchange inventory **Intensive Care** prediction forecasting modeling forecasting prediction forecasting rates Clinical Contract Reco ommen der Systems **Clinical Trial** Investment Personalized **Product** Preventative Decision Cross selling recommendat Matching recommender products banking measures Support ion

Why tabular data? Very related: Time Series Forecasting

How will XYZ develop over time?

- Stock prices
- Energy price
- Supply & demand
- Temperature
- Traffic congestion
- Machine health
- **–** ...

Why Foundation Models for Tabular Data?

Traditional ML

- Individual siloed models
- Lengthy task-specific training

Foundation models

- Off-the-shelf use without retraining
- Can quickly be finetuned to new use cases

Foundation models have transformed text & images

But our most valuable data is organized in tables

Our community is on its way to revolutionize tabular data

TabPFN v2
Publication in *Nature*

More accurate than previous ML on

>96% of use-

More data efficient than previous ML

Only 50% of the data needed for same accuracy

More than 1 Million Downloads

> Open-source Software with 4000 stars on Github

Outline

Motivation for Tabular Foundation Models

- **⇒** TabPFN
 - TabPFN v2
 - TabPFN for time series: TabPFN-TS
 - Explainability & Fairness

TabPFN: a Learned Algorithm for Small Tabular Data

- TabPFN is a GPT-like transformer for tabular classification
- Framed as next-word prediction: x_1 , y_1 , ..., x_n , y_n , x_{n+1} ,?

To be more precise:

$$\{(\mathbf{x}_1, \mathbf{y}_1), ..., (\mathbf{x}_n, \mathbf{y}_n)\}, \mathbf{x}_{n+1} \longrightarrow \mathbf{pfn} \longrightarrow \hat{\mathbf{y}}_{n+1}$$

• To be even more precise:

$$\{(x_1, \textcolor{red}{y_1}), ..., (x_n, \textcolor{red}{y_n})\}, x_{n+1} \longrightarrow \text{PFN} \longrightarrow p(\textcolor{red}{y_{n+1}} \mid x_{n+1}, \{(x_1, \textcolor{red}{y_1}), ..., (x_n, \textcolor{red}{y_n})\})$$

The high-level intuition

- TabPFN is a transformer with weights θ
 - A single forward pass directly approximates $p(y_{n+1} | x_{n+1}, \{(x_1, y_1), ..., (x_n, y_n)\})$
- We optimize θ to minimize average cross entropy loss across datasets
 - Across which datasets?
 - Millions of synthetically generated ones: $\{(x_1, y_1), ..., (x_{n+1}, y_{n+1})\}$
 - How do we train it?
 - Very standard transformer architecture (just drop the positional encoding)
 - Standard supervised learning with SGD

$$\{(x_1, y_1), ..., (x_n, y_n)\}, x_{n+1} \longrightarrow PFN_{\theta} \longrightarrow p(y_{n+1} \mid x_{n+1}, \{(x_1, y_1), ..., (x_n, y_n)\})$$

TabPFN High-Level Overview of Training & Inference

TabPFN is trained on synthetic data to take entire datasets as inputs and predict in a forward pass

TabPFN can now be applied to arbitrary unseen real-world datasets

The only missing piece: a method to **generate synthetic data sets** that resemble the data sets we expect (TabPFN then approximates the Bayesian posterior for the prior we define over these datasets)

TabPFN Prior: Integrating Principles from Causality

Sample & initialize a causal graph

Build dataset: output >0.2?

TabPFN Prior: Simplicity Principle

Prior likelihood

Graph Complexity

The generated datasets look similar to real datasets

Synthetic

datasets

Parkinsons dataset

Wine dataset

Qualitative result: smooth & well-calibrated predictions

Learning on synthetic datasets yields strong performance on new datasets

Simplicity: it's just a forward pass

Quantitative Result (87 numerical datasets, no missing values)

- Better performance in 1s than than any other ML / AutoML method in 1h
 - Disclaimer: these are average results; TabPFN is not the best on every single dataset

- Limitations (in 2022)
 - Size: up to 1000 data points,
 100 features, 10 classes
 - Not (yet) designed for: categorical features, missing values, uninformative features
 - Only classification
 - High inference time

Outline

- Motivation
- TabPFN
- TabPFN v2
 - TabPFN for time series: TabPFN-TS
- Explainability & Fairness

Improvements since TabPFN v1

- Now best tabular ML algorithm for <= 10000 data points, 500 features
 - Better in 5 seconds than any other method in 4 hours

Limitations resolved

- Size: up to 1000 10000 data points, 100 500 features, 10 classes
- Not (yet) Now also designed for: categorical features, missing values, uninformative features
- Classification & regression
- High Moderate inference time

Extensions since TabPFN v1

Scaling up

- More efficient attention to support more data points
- Change in architecture to support arbitrary #features
- Inference speedups

Improving the prior

- Trees in the structural causal models
- Supporting more activation functions (sine, log, exponentials, ..)
- Discretizing categoricals in the prior already
- A lot of engineering ...

Demonstrating foundation model capabilities

New TabPFN v2 Architecture

TabPFN Architecture

Results for Classification

Result across 29 datasets: better in 5s than other methods in 4h

Improvements are quite stable across datasets, for both default & tuned

Results for Regression

Normalized RMSE Comparison of Catboost and TabPFN

Comparison to the Leading AutoML Method AutoGluon

Classification:

- Even 5s of native TabPFN
 is better than AutoGluon (4h)
- TabPFN (PFE) better yet

Regression:

- TabPFN similar to AutoGluon
- TabPFN (PHE) still better
 - 5s matches AutoGluon 4h

TabPFN is now robust against uninformative features

- Setup: Add 9x uninformative features to actual features
- TabPFN v1 had big problems with uninformative features
 - Neural networks are notoriously bad at handling uninformative features, see MLP performance
- Including the possibility of uninformative features in the prior fixed this

TabPFN is now robust against missing values

- Setup: subset of datasets with / without missing values
- TabPFN v1 had some problems with missing values
- Including the possibility of missing features in the prior fixed this

TabPFN is now robust for categorical features

- Setup: subset of datasets with / without categorical features
- TabPFN v1 had problems with categorical features
- Including the possibility of categorical features in the prior fixed this

TabPFN works well with less samples

TabPFN using 50% of the data ties with CatBoost using 100% of the data

Finetuning: customizing the model (just like an LLM)

Fine-tuning to toy (sine) functions

Fine-tuning to (broad collection of) real datasets

Outline

- Motivation
- TabPFN
- TabPFN v2
- → TabPFN for time series: TabPFN-TS
 - Explainability & Fairness

TabPFN v2 also excels on time series data: TabPFN-TS

Casting time series forecasting as tabular regression

January 2025: This simple extension achieves SOTA on GIFT-Eval

January 2025: This simple extension achieves SOTA on GIFT-Eval

Point Forecast

Prior Labs, 11M Amazon, 205M Google, 500M

				rore	ecast			
T 🔺	model 🔺	MASE	A	CRPS		Rank		
•	TabPFN-TS	0.748	#4	0.48	#2	6.649	#1	
•	chronos bolt base	0.725		0.485		6.856		
•	timesfm_2_0_500m	0.680		0.465		6.897		
•	chronos_bolt_small	0.738		0.487		7.392		
•	PatchTST	0.762		0.496		8.258		
•	Moirai_large	0.785		0.506		8.381		
•	Moirai_base	0.809		0.515		8.454		
•	TFT	0.822		0.511		9.505		
•	Moirai_small	0.849		0.549		11.227		

Probabilistic

Rank of CRPS

January 2025: This simple extension achieves SOTA on GIFT-Eval

Point Forecast

Synthetic tabular data Synthetic + real TS data Real TS data

			Forecast	
T 🔺	model 🔺	MASE	CRPS A	Rank
•	TabPFN-TS	0.748 # 4	0.48 #2	6.649 # 1
•	chronos bolt base	0.725	0.485	6.856
T A O O O O O O O O O O O O O O	timesfm 2 0 500m	0.680	0.465	6.897
•	chronos bolt small	0.738	0.487	7.392
•	PatchTST	0.762	0.496	8.258
•	Moirai_large	0.785	0.506	8.381
•	Moirai_base	0.809	0.515	8.454
•	TFT	0.822	0.511	9.505
•	Moirai_small	0.849	0.549	11.227

Probabilistic

Rank of CRPS

Outline

- Motivation
- TabPFN
- TabPFN v2
- TabPFN for time series: TabPFN-TS
- Explainability & Fairness

Explainability: what effect does each feature have?

- SHAP analysis yields more reliable results for TabPFN
 - Much better predictions
 than linear regression
 → captures nonlinear effects
 - Much smoother predictions than boosted trees
 → clearer SHAP patterns

Counterfactual Fairness with TabPFN

[Robertson et al, ICML 2025]

- Counterfactual reasoning: what would the result be IF the protected feature changed?
 - "Holy Grail": remove the protected feature's causal effect on other features
- Solution with TabPFN's prior sampling:
 - Generate standard X_{biased} and y_{biased} , and remove causal effect to generate X_{fair} , Y_{fair}
 - Learn to map from X_{train, biased}, y_{train, biased}, X_{test, biased} to y_{test, fair}
- Substantially outperforms standard methods

Interventional predictions with Do-PFN

[Robertson et al, arXiv 2025]

- Interventional reasoning: what will happen to y if I change t?
- Solution with TabPFN's prior sampling:

- Generate standard observational data tob ,Xob and yob, and interventional t, Xpt, yin
- Learn to map from Xob, yob, Xpt, t, to yin
- Substantially outperforms standard methods

Take-aways

TabPFN is the new default for small tabular ML

- Currently: up to 10k data points, 500 features; scaling up further
- Unique features compared to previous methods
 - Faster (no HPO needed, more interactive data science)
 - Better peak performance
 - Works well with less data
- More interpretable

Finetuning clearly improves performance

Customization to various use cases

Open source

Thank you for your attention, and to my fantastic team!

- ✓ Al Scientists
- ✓ Engineers
- ✓ Data Scientists
- ✓ Developer relations
- ✓ Internships
- ✓ Founder Associate
- ✓ Product Manager

http://priorlabs.ai

\$5000 USD thank-you if we hire your referral for a fulltime position!

Email: frank@priorlabs.ai