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Personalized health models

– „Omics“-bloodmarkers instead of invasive diagnostics
– Better tabular models multiply value of $BN data acquisition efforts

Tabular data?
Example: Which patients have early-stage Alzheimer (based on omics blood markers)?

Tabular
prediction
problem
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Why tabular data?     
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Why tabular data?    Very related: Time Series Forecasting

How will XYZ 
develop over time?

– Stock prices
– Energy price
– Supply & demand
– Temperature
– Traffic congestion
– Machine health
– ...
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Why Foundation Models for Tabular Data?

• Individual siloed models
• Lengthy task-specific training

• Off-the-shelf use without retraining
• Can quickly be finetuned to new use cases
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Vision

Text ImagesTables, Time Series & Databases

But our most valuable data is organized in tables
Foundation models have transformed text & images
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Our community is on its way to revolutionize tabular data

More data efficient 
than previous ML

Only 50% of the 
data needed for 
same accuracy

More accurate than 
previous ML on

>96% of use-
cases

TabPFN v2
Publication in Nature

More than 
1 Million Downloads

Open-source 
Software with 
4000 stars on 

Github
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• Motivation for Tabular Foundation Models
• TabPFN
• TabPFN v2
• TabPFN for time series: TabPFN-TS
• Explainability & Fairness
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• TabPFN is a GPT-like transformer for tabular classification
• Framed as next-word prediction: x1, y1, ..., xn, yn, xn+1, ?

• To be more precise:

• To be even more precise:

TabPFN: a Learned Algorithm for Small Tabular Data

PFN{(x1, y1), ..., (xn, yn)}, xn+1 ොyn+1

p(yn+1 | xn+1 , {(x1, y1), ..., (xn, yn)})PFN{(x1, y1), ..., (xn, yn)}, xn+1
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PFNPFN

• TabPFN is a transformer with weights 
– A single forward pass directly approximates p(yn+1 | xn+1 , {(x1, y1), ..., (xn, yn)})

• We optimize  to minimize average cross entropy loss across datasets
– Across which datasets? 

• Millions of synthetically generated ones: {(x1, y1), ..., (xn+1, yn+1)}

– How do we train it?
• Very standard transformer architecture (just drop the positional encoding)
• Standard supervised learning with SGD

The high-level intuition

p(yn+1 | xn+1 , {(x1, y1), ..., (xn, yn)}){(x1, y1), ..., (xn, yn)}, xn+1
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TabPFN High-Level Overview of Training & Inference

The only missing piece: a method to generate synthetic data sets that resemble the data sets we expect

(TabPFN then approximates the Bayesian posterior for the prior we define over these datasets)
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TabPFN Prior: Simplicity Principle
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The generated datasets look similar to real datasets

Parkinsons
dataset

Wine 
dataset

Synthetic
datasets
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Qualitative result: smooth & well-calibrated predictions
Learning on synthetic datasets yields strong performance on new datasets
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Simplicity: it’s just a forward pass 

TabPFN forward pass
(and optional ensembling of different preprocessings)
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• Better performance in 1s than than any other ML / AutoML method in 1h
– Disclaimer: these are average results; TabPFN is not the best on every single dataset  

Quantitative Result (87 numerical datasets, no missing values)
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> 36 000x speedup• Limitations (in 2022)
– Size: up to 1000 data points, 

100 features, 10 classes
– Not (yet) designed for:

categorical features, 
missing values, 
uninformative features

– Only classification
– High inference time
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• Motivation
• TabPFN
• TabPFN v2
• TabPFN for time series: TabPFN-TS
• Explainability & Fairness
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Improvements since TabPFN v1

• Limitations resolved
– Size: up to 1000 10000 data points, 

100 500 features, 10 classes
– Not (yet) Now also designed for:

categorical features, 
missing values, 
uninformative features

– Classification & regression
– High Moderate inference time

• Now best tabular ML algorithm for <= 10000 data points, 500 features
– Better in 5 seconds than any other method in 4 hours
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• Scaling up
– More efficient attention to support more data points
– Change in architecture to support arbitrary #features
– Inference speedups

• Improving the prior
– Trees in the structural causal models
– Supporting more activation functions (sine, log, exponentials, ..)
– Discretizing categoricals in the prior already
– A lot of engineering …

• Demonstrating foundation model capabilities

Extensions since TabPFN v1
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New TabPFN v2 Architecture
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Results for Classification

Result across 29 datasets:
better in 5s than other methods in 4h Improvements are quite stable across datasets, 

for both default & tuned
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Results for Regression
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• Classification:
– Even 5s of native TabPFN

is better than AutoGluon (4h)
– TabPFN (PFE) better yet

Comparison to the Leading AutoML Method AutoGluon

• Regression:
– TabPFN similar to AutoGluon
– TabPFN (PHE) still better

• 5s matches AutoGluon 4h
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• Setup: Add 9x uninformative features to actual features
• TabPFN v1 had big problems with uninformative features

– Neural networks are notoriously bad at handling uninformative features, see MLP performance

• Including the possibility of uninformative features in the prior fixed this

TabPFN is now robust against uninformative features

TabPFN CatBoost MLP Linear
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• Setup: subset of datasets with  / without missing values
• TabPFN v1 had some problems with missing values 
• Including the possibility of missing features in the prior fixed this

TabPFN is now robust against missing values

TabPFN CatBoost MLP Linear
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• Setup: subset of datasets with  / without categorical features
• TabPFN v1 had problems with categorical features
• Including the possibility of categorical features in the prior fixed this

TabPFN is now robust for categorical features

TabPFN CatBoost MLP Linear
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• TabPFN using 50% of the data ties with CatBoost using 100% of the data

TabPFN works well with less samples

TabPFN CatBoost MLP Linear
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Fine-tuning to toy (sine) functions

Finetuning: customizing the model (just like an LLM)
Fine-tuning to (broad collection of) real datasets
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• Motivation
• TabPFN
• TabPFN v2
• TabPFN for time series: TabPFN-TS
• Explainability & Fairness
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TabPFN v2 also excels on time series data: TabPFN-TS
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Casting time series forecasting as tabular regression
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January 2025: This simple extension achieves SOTA on GIFT-Eval
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January 2025: This simple extension achieves SOTA on GIFT-Eval

Prior Labs, 11M
Amazon, 205M

Google, 500M
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January 2025: This simple extension achieves SOTA on GIFT-Eval

Synthetic tabular data
Synthetic + real TS data
Real TS data
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• Motivation
• TabPFN
• TabPFN v2
• TabPFN for time series: TabPFN-TS
• Explainability & Fairness
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• SHAP analysis yields more 
reliable results for TabPFN
– Much better predictions 

than linear regression 
→ captures nonlinear effects

– Much smoother predictions 
than boosted trees 
→ clearer SHAP patterns

Explainability: what effect does each feature have?

Linear 
regression

TabPFN

CatBoost
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Counterfactual Fairness with TabPFN

• Counterfactual reasoning: what would the result be IF the protected feature changed?
– “Holy Grail”: remove the protected feature’s causal effect on other features

• Solution with TabPFN’s prior sampling:
– Generate standard Xbiased and ybiased, and remove causal effect to generate Xfair, Yfair
– Learn to map from Xtrain, biased, ytrain, biased, Xtest, biased to ytest, fair

• Substantially outperforms standard methods

39

[Robertson et al, ICML 2025]
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Interventional predictions with Do-PFN

40

• Interventional reasoning: what will happen to y if I change t?
• Solution with TabPFN’s prior sampling:

– Generate standard observational data tob ,Xob and yob, and interventional t, Xpt, yin
– Learn to map from Xob, yob, Xpt, t, to yin

• Substantially outperforms standard methods

[Robertson et al, arXiv 2025]
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• TabPFN is the new default for small tabular ML
– Currently: up to 10k data points, 500 features; scaling up further
– Unique features compared to previous methods

• Faster (no HPO needed, more interactive data science)
• Better peak performance
• Works well with less data 

– More interpretable

• Finetuning clearly improves performance
– Customization to various use cases

Take-aways

Open source
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Thank you for your attention, and to my fantastic team!

✓ AI Scientists
✓ Engineers
✓ Data Scientists
✓ Developer relations
✓ Internships
✓ Founder Associate
✓ Product Manager

Email: frank@priorlabs.aihttp://priorlabs.ai

$5000 USD thank-you 
if we hire your referral
for a fulltime position!
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